LM567/LM567C Tone Decoder
Check for Samples: LM567, LM567C

FEATURES

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14%
- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

APPLICATIONS

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders

DESCRIPTION

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

Connection Diagram

Metal Can Package

Figure 1. Top View
Order Number LM567H or LM567CH
See NS Package Number H08C

OBSOLETE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Pin</td>
<td>9V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>1100 mW</td>
</tr>
<tr>
<td>V₈</td>
<td>15V</td>
</tr>
<tr>
<td>V₃</td>
<td>-10V</td>
</tr>
<tr>
<td>V₃</td>
<td>V₄ + 0.5V</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>LM567H</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>LM567CH, LM567CM, LM567CN</td>
<td></td>
</tr>
</tbody>
</table>

Soldering Information

<table>
<thead>
<tr>
<th>Package</th>
<th>Method</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-In-Line Package</td>
<td>Soldering (10 sec.)</td>
<td>260°C</td>
</tr>
<tr>
<td>Small Outline Package</td>
<td>Vapor Phase (60 sec.)</td>
<td>215°C</td>
</tr>
<tr>
<td></td>
<td>Infrared (15 sec.)</td>
<td>220°C</td>
</tr>
</tbody>
</table>

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for the parameters where no limit is given, however, the typical value is a good indication of device performance.

(2) The maximum junction temperature of the LM567 and LM567C is 150°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 110°C/W, junction to ambient. For the Small Outline package, the device must be derated based on a thermal resistance of 160°C/W, junction to ambient.
Electrical Characteristics

AC Test Circuit, \(T_A = 25^\circ C, V^+ = 5V \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conditions</th>
<th>LM567</th>
<th>LM567C/LM567CM</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage Range</td>
<td></td>
<td>4.75</td>
<td>5.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Power Supply Current Quiescent</td>
<td>(R_L = 20k)</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Power Supply Current Activated</td>
<td>(R_L = 20k)</td>
<td>11</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Input Resistance</td>
<td></td>
<td>18</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Smallest Detectable Input Voltage</td>
<td>(I_L = 100 \ mA, f_i = f_o)</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Largest No Output Input Voltage</td>
<td>(I_C = 100 \ mA, f_i = f_o)</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Largest Simultaneous Outband Signal to Inband Signal Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Input Signal to Wideband Noise Ratio</td>
<td>(B_n = 140 \ kHz)</td>
<td>-6</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>Largest Detection Bandwidth</td>
<td></td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Largest Detection Bandwidth Skew</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Largest Detection Bandwidth Variation with Temperature</td>
<td></td>
<td>±0.1</td>
<td>±0.1</td>
<td></td>
</tr>
<tr>
<td>Largest Detection Bandwidth Variation with Supply Voltage</td>
<td>4.75–6.75V</td>
<td>±1</td>
<td>±2</td>
<td>±1</td>
</tr>
<tr>
<td>Highest Center Frequency</td>
<td></td>
<td>100</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>Center Frequency Stability (4.75–5.75V)</td>
<td>(0 < T_A < 70) \ -55 < T_A < +125)</td>
<td>35 ± 60</td>
<td>35 ± 140</td>
<td>35 ± 60</td>
</tr>
<tr>
<td>Center Frequency Shift with Supply Voltage</td>
<td>4.75V–6.75V</td>
<td>0.5</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Fastest ON-OFF Cycling Rate</td>
<td>(f_o/20)</td>
<td>f_o/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>(V_8 = 15V)</td>
<td>0.01</td>
<td>25</td>
<td>0.01</td>
</tr>
<tr>
<td>Output Saturation Voltage</td>
<td>(e_i = 25 \ mV, I_8 = 30 \ mA)</td>
<td>0.2</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>(e_i = 25 \ mV, I_8 = 100 \ mA)</td>
<td>0.2</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Output Fall Time</td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Output Rise Time</td>
<td></td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
Schematic Diagram
Typical Performance Characteristics

Typical Frequency Drift

Bandwidth vs Input Signal Amplitude

Detection Bandwidth as a Function of C_2 and C_3

Greatest Number of Cycles Before Output

Typical Bandwidth Variation

Largest Detection Bandwidth

Typical Supply Current vs Supply Voltage

Typical Output Voltage vs Temperature
Typical Applications

Figure 3. Touch-Tone Decoder

Component values (typ)
- R1 6.8 to 15k
- R2 4.7k
- R3 20k
- C1 0.10 mfd
- C2 1.0 mfd 6V
- C3 2.2 mfd 6V
- C4 250 mfd 6V
Figure 4. Oscillator with Quadrature Output

Connect Pin 3 to 2.8V to Invert Output

Figure 5. Oscillator with Double Frequency Output

Figure 6. Precision Oscillator Drive 100 mA Loads
AC Test Circuit

![AC Test Circuit Diagram]

\[f_i = 100 \text{ kHz} + 5V \]

*Note: Adjust for \(f_o = 100 \text{ kHz} \).

Applications Information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

\[f_o \approx \frac{1}{1.1 R_1 C_1} \]

(1)

The bandwidth of the filter may be found from the approximation

\[BW = 1070 \sqrt{\frac{V_i}{V_o C_2}} \text{ in } \% \text{ of } f_o \]

(2)

Where:

- \(V_i \) = Input voltage (volts rms), \(V_i \leq 200 \text{mV} \)
- \(C_2 \) = Capacitance at Pin 2(\(\mu \text{F} \))

LM567C MDC MWC
Tone Decoder

![Die Layout (C - Step) Diagram]

Table 1. Die/Wafer Characteristics

<table>
<thead>
<tr>
<th>Fabrication Attributes</th>
<th>General Die Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Die Identification</td>
<td>LM567C</td>
</tr>
<tr>
<td>Bond Pad Opening Size (min)</td>
<td>91(\mu \text{m} \times 91\mu \text{m})</td>
</tr>
<tr>
<td>Die Step</td>
<td>C</td>
</tr>
<tr>
<td>Bond Pad Metalization</td>
<td>0.5% COPPER_BAL. ALUMINUM</td>
</tr>
</tbody>
</table>
Table 1. Die/Wafer Characteristics (continued)

<table>
<thead>
<tr>
<th>Physical Attributes</th>
<th>Passivation</th>
<th>VOM NITRIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer Diameter</td>
<td>150mm</td>
<td>Back Side Metal</td>
</tr>
<tr>
<td>Dise Size (Drawn)</td>
<td>1600µm x 1626µm 63.0mils x 64.0mils</td>
<td>Back Side Connection</td>
</tr>
<tr>
<td>Thickness</td>
<td>406µm Nominal</td>
<td></td>
</tr>
<tr>
<td>Min Pitch</td>
<td>198µm Nominal</td>
<td></td>
</tr>
</tbody>
</table>

Special Assembly Requirements:
Note: Actual die size is rounded to the nearest micron.

Die Bond Pad Coordinate Locations (C - Step)

(Referenced to die center, coordinates in µm) NC = No Connection, N.U. = Not Used

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>PAD# NUMBER</th>
<th>X/Y COORDINATES</th>
<th>PAD SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT FILTER</td>
<td>1</td>
<td>-673 686</td>
<td>x 91</td>
</tr>
<tr>
<td>LOOP FILTER</td>
<td>2</td>
<td>-673 -419</td>
<td>x 91</td>
</tr>
<tr>
<td>INPUT</td>
<td>3</td>
<td>-673 -686</td>
<td>x 91</td>
</tr>
<tr>
<td>V+</td>
<td>4</td>
<td>-356 -686</td>
<td>x 91</td>
</tr>
<tr>
<td>TIMING RES</td>
<td>5</td>
<td>673 -122</td>
<td>x 91</td>
</tr>
<tr>
<td>TIMING CAP</td>
<td>6</td>
<td>673 76</td>
<td>x 91</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>178 686</td>
<td>x 91</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>8</td>
<td>-318 679</td>
<td>x 104</td>
</tr>
</tbody>
</table>

IN U.S.A
Tel #: 1 877 Dial Die 1 877 342 5343
Fax: 1 207 541 6140

IN EUROPE
Tel: 49 (0) 8141 351492 / 1495
Fax: 49 (0) 8141 351470

IN ASIA PACIFIC
Tel: (852) 27371701

IN JAPAN
Tel: 81 043 299 2308

Copyright © 2004–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM567 LM567C
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Samples</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM567CM</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>TBD</td>
<td>CU SNPB</td>
<td>Level-1-235C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM567CM/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM567CMX/NOPB</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM567CN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>40</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-1-NA-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM567CN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>Call TI</td>
<td>Level-1-NA-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE567V</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>40</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-1-NA-UNLIM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **Pb-Free (RoHS)**: TI’s terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI’s knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Fall within JEDEC MS-001 variation BA.

4040082/E 04/2010
NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.

E. Reference JEDEC MS-012 variation AA.
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- **Audio**
 - www.ti.com/audio
- **Amplifiers**
 - amplifier.ti.com
- **Data Converters**
 - dataconverter.ti.com
- **DLP® Products**
 - www.dlp.com
- **DSP**
 - dsp.ti.com
- **Clocks and Timers**
 - www.ti.com/clocks
- **Interface**
 - interface.ti.com
- **Logic**
 - logic.ti.com
- **Power Mgmt**
 - power.ti.com
- **Microcontrollers**
 - microcontroller.ti.com
- **RFID**
 - www.ti-rfid.com
- **OMAP Applications Processors**
 - www.ti.com/omap
- **Wireless Connectivity**
 - www.ti.com/wirelessconnectivity

Applications

- **Automotive and Transportation**
 - www.ti.com/automotive
- **Communications and Telecom**
 - www.ti.com/communications
- **Computers and Peripherals**
 - www.ti.com/computers
- **Consumer Electronics**
 - www.ti.com/consumer-apps
- **Energy and Lighting**
 - www.ti.com/energy
- **Industrial**
 - www.ti.com/industrial
- **Medical**
 - www.ti.com/medical
- **Security**
 - www.ti.com/security
- **Space, Avionics and Defense**
 - www.ti.com/space-avionics-defense
- **Video and Imaging**
 - www.ti.com/video
- **TI E2E Community**
 - e2e.ti.com