
Design and Analysis of a Multi-Channel Discriminator
Integrated Circuit for Use in Nuclear Physics Experiments

by Bryan Orabutt, Bachelor of Science

A Thesis Submitted in Partial
Fulfillment of the Requirements

for the Degree of
Master of Science

in the field of Electrical Engineering

Advisory Committee:

George L. Engel, D.Sc, Chair

Bradley Noble, D.Sc

Timothy York, PhD

Graduate School
Southern Illinois University Edwardsville

August, 2018

c© Copyright by Bryan Orabutt August, 2018
All rights reserved

ABSTRACT

DESIGN AND ANALYSIS OF A MULTI-CHANNEL DISCRIMINATOR
INTEGRATED CIRCUIT FOR USE IN NUCLEAR PHYSICS EXPERIMENTS

by

BRYAN ORABUTT

Chairperson: Professor George L. Engel, D.Sc

This thesis presents the design and simulation of a multi-channel integrated circuit (IC)

that will be used in nuclear physics experiments. The chip is being designed as a companion

chip for another IC used in particle identification called PSD8C. The IC described in

this thesis is used to create precise timing pulses for starting time-to-voltage converters

(TVCs) and gated integrators on the PSD8C. These timing pulses are created using a

technique called Constant Fraction Discrimination (CFD). Each of the sixteen channels

in the IC contains a Nowlin circuit, leading-edge discriminator, zero-cross discriminator,

and a one-shot circuit to generate the output.

The IC will support input pulse amplitudes between 15 mV and 1.5 V (both positive

and negative), and input pulse rise times between 2 nsec and 192 nsec. The IC will feature

a programmable output pulse width between 50 nsec and 500 nsec. The IC will have an

average power dissipation of 220 mW and occupy an area of 1.9x3.5 mm2. The jitter in

the trailing edge of the output timing pulse will be less than 5 nsec (for pulse width of

50 nsec). Most importantly the output pulse firing time variation will be independent

of the input amplitude, having a time walk of only 500 psec or less (for input pulse rise

time constants of 2 nsec). The IC has been named CFD16C and the design presented is

implemented in a 0.35 micron NWELL process.

ii

ACKNOWLEDGEMENTS

I would first like to thank Dr. George Engel for being a continuous source of guidance

through all my time working on this project. I would also like to thank Dr. Bradley Noble

for encouraging me to investigate challenging problems and for being a source of guidance

both in the classroom and out. I would also thank Dr. Timothy York for introducing

me to IC design, without him I likely would never have gone to graduate school. I am

grateful to Dr. Lee Sobotka and Mr. Jon Elson, department of chemistry, Washington

University Saint Louis, for their help during the various stages of this project. My special

thanks to all of the faculty and staff of ECE department for their direct and indirect

support without which I simply could not have progressed with my work. Additionally,

Dr. Gary Mayer of the Computer Science department has helped me expand knowledge

beyond the skills learned in the classroom, and I am forever thankful.

I owe a debt of gratitude to my fellow graduate students whom I’ve been privileged

to work with on this project as well. Pohan Wang, Prarthana Jani, Sneha Edula, Anil

Korkmaz, Sri Kandula, and I all worked together to make CFD16C possible. They have

helped make this project a pleasure to work on.

I would not have gotten this far without my friends Jack White, Jared Charter,

Andrew Quirin, Nelly Sanchez, and Shana Mankouski who have offered support during

all of my endeavors in graduate school. I am forever grateful to my family for being a

constant source of encouragement. My mother Marsha Orabutt, brother Sean Orabutt,

and Vicki Kern, have all been there for me and I know I could not have come this far

without them.

iii

Special thanks to the National Science Foundation (NSF) for funding the work

presented in this thesis under NSF Grant#1625499.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

Chapter

1. INTRODUCTION . 1

1.1 Research Background . 1
1.2 PSD8C IC . 3
1.3 Need for an Integrated Circuit . 7
1.4 Sample Applications . 7
1.5 Object and Scope of Work . 9

2. SYSTEM ARCHITECTURE . 10

2.1 System Specifications . 10
2.2 Features . 11
2.3 System-Level Description . 12

2.3.1 Common channel . 13
2.3.2 Signal channel . 15

2.4 Chip Pinout . 18

3. ELECTRICAL LEVEL DESIGN . 19

3.1 Fabrication Process . 19
3.2 Common Channel . 19

3.2.1 Configuration registers 20
3.2.2 Power on reset circuit 21
3.2.3 Signal ground generator 22
3.2.4 Bandgap voltage reference 22
3.2.5 PTAT current reference 23
3.2.6 Zero-tempco current reference 23
3.2.7 Lockout DAC . 28
3.2.8 Multiplicity output buffer 32

3.3 Signal Channel . 32
3.3.1 Programmable Nowlin circuit 33
3.3.2 Dynamic offset cancellation loop 38

v

3.3.3 Zero-cross discriminator 39
3.3.4 Leading-edge discriminator 44
3.3.5 Output one-shot with lockout features 46
3.3.6 Final output generation 48

4. SIMULATION RESULTS . 51

4.1 Verification of Circuits in Common Channel 51
4.2 Walk Characteristics of CFD Circuit 51
4.3 Jitter Performance . 55
4.4 Verification of One-Shot . 55
4.5 Performance Characterization of DAC 59
4.6 Chip-Level Verification . 61

4.6.1 Testing Procedure . 63
4.6.2 Power dissipation . 67
4.6.3 Chip area usage . 68

5. SUMMARY, CONCLUSIONS, AND FUTURE WORK 72

5.1 Summary . 72
5.2 Conclusions . 73
5.3 Future Work . 73

REFERENCES . 74

APPENDICES . 77

A. Verilog-A pulse generator . 77
B. Verilog-A Test fixture . 79
C. System Verilog global defines . 81
D. System Verilog tasks . 82
E. System Verilog test fixture . 89
F. System Verilog instantiation . 94
G. VCD to PWL python script . 96

vi

LIST OF FIGURES

Figure Page

1.1 Block diagram of a typical PSD system. 2
1.2 PSD Channel . 4
1.3 PSD Sub-channel. 5
1.4 PSD system using board-level CFD electronics 8

2.1 System level overview for one channel of the CFD16C 12
2.2 System level diagram of the common channel 14
2.3 The address, mode, & data shared bus scheme 15
2.4 Zero cross discriminator with DC offset cancellation 16
2.5 Leading edge discriminator with DC offset cancellation 16
2.6 System level diagram of one-shot stage 17
2.7 Timing pulse output qualification . 18

3.1 Register address and mode decoding . 21
3.2 Bandgap temperature dependence. 24
3.3 PTAT current reference temperature dependence. 25
3.4 Zero temperature coefficient current generator. 26
3.5 Zero temperature coefficient current temperature dependence. 27
3.6 6-bit bipolar DAC . 29
3.7 One stage of DAC using R2R ladder . 30
3.8 DAC output current stage . 31
3.9 Multiplicity output buffer. 33
3.10 Nowlin circuit for short mode . 34
3.11 Nowlin circuit for long mode . 34
3.12 Input signal with 3 nsec risetime constant showing Nowlin delay effects . 36
3.13 Programmable capacitor circuit. 38
3.14 Schematic of low bandwidth, low gain OTA. 40
3.15 Schematic of low-gain high-bandwidth differential amplifier. 42
3.16 Schematic of high-bandwidth, very fast comparator. 44
3.17 Schematic of differential voltage to single-ended current converter. 45
3.18 Schematic of leading edge comparator. 46
3.19 One-shot circuit with lockout . 47
3.20 Comparator ramp input . 48
3.21 Fast pseudo-NMOS NOR . 50

4.1 Typical walk performance with a a signal whose rise time constant is 3 nsec. 53
4.2 Summary walk performance with a signal whose rise time constant is 3 nsec. 54
4.3 Jitter performance for short time constant mode. 56
4.4 Jitter performance for short time constant mode. 57
4.5 Lockout times for short and long modes 58
4.6 6-bit DAC DNL error summary . 60

vii

4.7 6-bit DAC INL error summary . 60
4.8 6-bit DAC worst case error . 61
4.9 6-bit DAC average case error . 62
4.10 Sixteen output timing pulses overlayed to demonstrate walk characteristics 64
4.11 Full chip testing procedure . 65
4.12 Breakdown of average power dissipation 68
4.13 Breakdown of peak power dissipation . 69
4.14 Breakdown of IC area usage . 70
4.15 CFD16C full layout . 71

viii

LIST OF TABLES

Table Page

2.1 Register modes and usage . 13
2.2 Pinout of CFD16C . 18

3.1 NMOS Parameters . 19
3.2 PMOS Parameters . 20
3.3 Signal ground generator trim values . 22
3.4 Zero tempco current generator device sizes. 28
3.5 Device sizes for single stage of current scaling DAC 29
3.6 Current scaling DAC output device sizes 30
3.7 Multiplicity buffer device sizes . 32
3.8 Programmable capacitor values and time constants. 37
3.9 Device Sizes for Zero-Cross Detector Differential Amplifier 42
3.10 Device Sizes for Zero-Cross comparator 43
3.11 Differential to single ended amplifier device sizes 45
3.12 Leading-edge comparator device sizes . 46
3.13 Test point multiplexer outputs . 49
3.14 Pseudo-NMOS NOR gate device sizes . 50

4.1 Time walk as function of risetime constant, τr for G = 4.5, N = 5
and GBWc = 3GHz. 52

4.2 One-shot pulse width variation from process and mismatch 59

ix

CHAPTER 1

INTRODUCTION

This chapter will introduce the reader to the field of radiation monitoring and describe

how custom multi-channel integrated circuits are helping to re-shape this field. The IC

described in this thesis, called CFD16C (Constant Fraction Discriminator–16 Channels),

is the newest addition to the family of ICs which are being developed by the IC Design

Research Laboratory at Southern Illinois University Edwardsville (SIUE) in collaboration

with researchers from the Nuclear Reactions Group at Washington University (WUSTL).

1.1 Research Background

The Integrated Circuits Design Research Laboratory at SIUE and the Nuclear Re-

actions Group at WUSTL have been working (since 2001) on a family of multi-channel

custom integrated circuits. The group became interested in developing a family of mi-

crochips for use in the detection and measurement of ionizing radiation because: (1) the

need for high-density signal processing in the low- and intermediate-energy nuclear physics

community is widespread, (2) no commercial chips were identified that were capable of

doing what the researchers wanted, and (3) the scientists deemed it necessary for the

experimenter to be in the designer’s seat. The goal is to develop a “toolbox” of circuits,

useful for researchers working with radioactive ion beams, which can be composed in

different ways to meet the researchers’ evolving needs and desires.

The group’s first success was an analog shape and peak sensing chip with on-board

constant-fraction discriminators and sparsified readout. This chip is designed for use with

arrays of Si strip detectors of medium scale (with the number of channels ranging from a

few hundred to a few thousand) and is known as Heavy-Ion Nuclear Physics–16 Channel

(HINP16C).

The second chip, christened Pulse Shape Discrimination–8 Channel(PSD8C), was

2

designed to logically complement (in terms of detector types) the HINP16C chip. PSD8C

performs pulse shape discrimination (PSD), and thus particle identification, if the time

dependence of the light output of the scintillator depends on particle type. Moreover,

PSD8C uses almost all the same supporting hardware as the HINP16C chip. Both ICs

were fabricated in the ON-Semiconductor (formerly AMI) 0.5 mm n-well process (C5N),

available through MOSIS (see www.mosis.com).

Figure 1.1: Block diagram of a typical PSD system.

Figure 1.1 shows a typical PSD system using the PSD8C IC. The outputs of a detector

array are split in two so that a copy of each signal can be sent to both the CFD circuit and

the PSD8C. The signals sent to the PSD8C must be delayed to match the propagation

delay of the CFD circuit. The CFD logic signals are ANDed with a global enable signal

www.mosis.com

3

to provide channel enables for the PSD8C. For each delayed detector signal (and it’s

associated CFD logic signal), three integrations (called A, B, C) will be performed with

start times referenced to the CFD signals. An additional amplitude, T, is produced which

is proportional to the time difference between the CFD firing and an external common

stop reference, which eliminated the need for VME TDCs.

The integrators’ starting time delay (DA, DB, DC) and the integration window widths

(WA, WB, WC) are controlled by the user. In Figure 1.1, DA, DB, DC are voltages that

are converted to times on-chip, along with the widths WA, WB, WC .

1.2 PSD8C IC

Our PSD8C chip greatly simplifies the pulse-processing electronics needed for large

arrays of scintillation detectors. Each channel(see Figure 1.2) possesses 3 sub-channels.

The sub-channels are referred to as A, B, and C. The A sub-channel consists of an

integrator and a gate generator. External control voltages (DX, WX) determine the gate

delay and the gate width. The structure of a single PSD8C sub-channel is illustrated in

Figure 1.3. Because PSD8C employs (user-controlled) multi-region charge integration,

particle identification is incorporated into the basic design. Each channel on the chip also

contains a TVC that provides relative time information. The pulse height integrals and

the relative time are all stored on capacitors and are either reset after a user-controlled

time, or sequentially read out, if acquisition of the event is desired (in a manner similar

to that of HINP16C).

Features of the first generation PSD8C (Rev. 1) chip include:

• eight independent channels per IC;

• on-chip data sparsification;

• each channel automatically resets itself after a user programmable delay time;

4

Figure 1.2: PSD Channel

5

Figure 1.3: PSD Sub-channel.

6

• three (3) integration regions each with: (a) independent control of time offset

(beginning), (b) width (ending) of the integration window, and (c) a menu of eight

(8) charging rates;

• each channel possesses a TVC (Time-to-Voltage Converter) with two time ranges:

500 nsec and 2 msec;

• three triggering modes;

• fast logical OR-gate and an analog multiplicity output to aid in trigger decisions;

• two power modes to facilitate use with fast and slow detectors thus allow for a more

modest power budget for the latter;

• and CFD circuits are not on-chip so as to provide greater flexibility.

PSD8C is described in detail in [Proctor, 2007] and [Hall, 2007]. PSD8C is 2.25 by 5.7

mm2 and is packaged in a 14 by 14 mm2, 128 lead thin quad flat pack. Power consumption

is 65 mW (low-bias mode)and 150 mW (high-bias mode). A second version (Rev. 2) of

PSD8C was submitted for fabrication in May 2010. Rev. 2 attempted to correct several

minor problems. First, the TVC circuit could inadvertently be restarted. In Rev. 2, once

the rising edge of the “common stop” signal is detected, the TVC cannot restart until the

channel is reset. Second, undesirable temperature dependence (1 nsec
◦C

) in the TVC circuit

was identified and traced to the local channel buffer. The buffer was redesigned, and the

TVC temperature sensitivity was greatly reduced (5 psec
◦C

in the 500 nsec mode, 40 psec
◦C

in the 2 msec mode). Third, some TVC crosstalk issues were identified and remedied.

Fourth, additional shielding was added to the integrator circuits. Finally, at the system

level, the chip-boards (printed-circuit boards) were redesigned to include on-board analog

to digital converters, or ADCs (one for each of the chip’s analog output pulse trains).

7

In the latest revision of PSD8C, level translators were added to all of the digital pads

on the chip. These level translators convert 5 V logic level outputs into 3.3 V logic levels

to be used safely by a field programmable gate array (FPGA). The input level translators

perform the opposite function, converting 3.3 V signals into 5 V logic levels so the FPGA

can reliably provide data to the PSD8C. Aslo, in the latest version of the chip, the TVC

circuits start on the ”falling” rather than ”rising” edge of the CFD input timimg pulse.

This change has profound implications for the the design presented in this thesis. Most

notably, the timimg pulses produced by the CFD chip described herein must possess low

jitter (stocahistic timimg uncertainty) for both edges of the output pulses.

1.3 Need for an Integrated Circuit

Although not including the timing circuits on PSD made it more flexible, those circuits

are needed. Currently, a large complex board with many ICs produce the timing signals

required by the PSD chip. This thesis describes the design of a multi-channel integrated

circuit which can generate the timing signals for a pair of PSD chips.

1.4 Sample Applications

To focus the reader’s attention on what would be possible with the PSD chip comple-

mented by the CFD chip described in this thesis, consider a highly granular discrete element

array for neutron detection using the recently developed inorganic [B.S. Budden, 2015]

and plastic [N. Zaitseva, 2012] scintillators with PSD. Such a large array would open the

n-rich side up to the kind of high-precision work the Washington University group has done

on the p-rich side. (The existing work on the neutron-rich side, done at high energy and

with detectors such as MONA-LISA [T. Baumanna, 2005], while providing provocative

data on such cases as 16Be [A. Spyrou, 2012] and 26O [Kohley Z., 2015], suffered from

poor statistics and, compared to the proton-rich side, poor resolution.) An array to be

deployed at low (reaccelerated beam) energies with thousands of optically isolated PSD

8

Figure 1.4: PSD system using board-level CFD electronics

9

elements made from the new generation of plastics, would revolutionize the study of

multiple n-decay from what are generally high-isospin states. (The problem of detector-

to-detector scattering cross-talk can also be improved with discrete pixilation rather

than using large bars by corrugating the detectors in the same way as the conventional

discrete array DEMON has [I. Tilquin, 1995]).

While we are enamored with the above idea, it is premature to propose such an array

before the ground-work for scalable timing electronics, as we describe in this thesis, is

successfully completed. (In fact the coupling of the scintillator from Eljen to the new

blue sensitive SiPMs from SensL is simple compared to the development of the scalable

electronics.) To this end however, we plan to develop a circuit board using the PSD and

CFD chips to process signals from the new generation of PSD-capable plastic scintillators

[N. Zaitseva, 2012].

The CFD chip described herein with its programmable Nowlin cirucit will allow

the WUSTL Nuclear Reactions Group to work with variety of scintillators (LaBr:Ce to

CsI:Tl or :Na to standard plastics and, for what might be the most interesting untapped

opportunity, the new class of PSD capable plastics [N. Zaitseva, 2012]).

1.5 Object and Scope of Work

The object of this thesis work was to create a multi-channel integrated circuit capable of

constant fraction discrimination. This thesis is composed of five chapters. The system level

architecture is presented in Chapter 2. Chapter 3 describes the circuit level design of the

many sub-circuits that compose the CFD16C. Chapter 4 details the simulated performance

of the CFD16C to show that it performs within the intended design specification. Finally

Chapter 5 provides a summary, conclusions, and details future work to be done on the

CFD16C.

10

CHAPTER 2

SYSTEM ARCHITECTURE

This chapter will attempt to describe the CFD16C integrated circuit at the system-level.

We will start with a detailed list of system requirements and then will describe the

high-level architecture of the IC.

2.1 System Specifications

The success of our group over the past 20 years lies on the close working relationship

that the IC Design Research Laboratory at Southern Illinois University Edwardsville

(SIUE) has had with the Nuclear Reactions Group at Washington University in St.

Louis(WUSTL) led by Dr. Lee Sobotka. The IC group here at SIUE and the Nuclear

Reactions Group at WUSTL, after lengthy discussions, drafted the following specifications

for the IC described here in this thesis.

• The IC should support 16 detectors.

• It should support analog pulses of both polarities (relative to analog signal ground).

• It should accommodate analog exponentially shaped pulses with rise time constants

ranging from 2 nsec to 192 nsec.

• It must exhibit “excellent” walk and jitter characteristics for input pulse amplitudes

ranging from 15 mV to 1.5 V. The adjective “excellent” will be quantified in a later

chapter of this thesis.

• Pulse repetition rates up to 1 KHz must be accommodated.

• The discriminator in each of the 16 channels should be of the constant fraction type

(CFD). In CFD discriminators an attenuated version of the input is subtracted from

11

a delayed version of input waveform and the time at which the difference between

the two is equal to zero is used to mark the pulse arrival time. This results in output

timing signals independent of pulse amplitude.

• Each channel should have a leading-edge threshold.

• While the chip must support signals with rise time constants ranging from 2 nsec

to 192 nsec, performance will be optimized for the shorter time constants.

• The output pulse width from a channel should be programmable.

• The IC should operate from a single 3.3 Volt supply.

• Power consumption of the 16 channel IC should not exceed 350 mW i.e. 20 mW

per channel with 30 mW budgeted for the circuits common to all channels.

• The IC is not to occupy an area greater than roughly 2 mm x 3 mm. The chip

should be packaged in a 64-pin plastic package.

2.2 Features

In order to achieve the intended system design specification many of the analog circuity

in the chip is user configurable. The Nowlin delay time, leading edge threshold, one-shot

pulse width, and lockout times are all able to be configured to the user’s needs. Writing

to configuration registers is performed using a signal 8-bit wide bus to provide address,

mode, and data information. Using the user-controlled STB line, address and mode

can be presented on the rising edge and then data will be registered into the selected

configuration register on the falling edge.

Each channel can be individually enabled or disabled as per the needs of the user.

Additionally, should it be required, all sixteen channels can be disabled with a single

global enable pin available to the user. Finally, a test point is provided to give the user

12

feedback about how some of the digital circuit elements within the channel are performing.

This test point can come from eight different nodes within a specified signal channel.

2.3 System-Level Description

The CFD16C is designed in a 0.35 micron CMOS process. The chip is designed to

act as a multi-channel constant fraction discriminator with very low jitter and time walk

in the output timing pulse. The chip contains sixteen signal channels that are driven

by a detector and a single common channel that contains circuitry used by all of the

signal channels. A system level block diagram of a single signal channel can be seen in

Figure 2.1.

Figure 2.1: System level overview for one channel of the CFD16C

An analog input pulse will arrive at the input stage of the channel in the form of an

exponential voltage pulse with a rise time approximately 10 to 100 times faster than its

fall time. This stage contains a Nowlin circuit that creates a differential output and a high

pass filtered output (often referred to in the literature as the ”fast shaper” output) from

the input pulse. The differential output is used as input to a zero crossing discriminator

while the high pass filtered output is used as input to a leading edge discriminator. The

outputs of the two discriminator channels are ANDed together to provide input to a one

shot that creates the output timing pulse. Additional outputs such as a test point and

13

multiplicity output are generated in a final output stage of the channel.

2.3.1 Common channel

The common channel presented in Figure 2.2 contains configuration registers to change

the performance of the various analog circuits in the signal channels. There are a total of

three configuration registers in the common channel and one on the signal channel. These

registers can be individually selected and loaded by using an special address and mode

scheme. Each channel is assigned a 4-bit address from 0000 to 1111 and each register

is assigned a 3-bit mode. In order to load any specific register, the correct mode and

address must be provided. A fourth bit of mode, the MSB, is used to select all registers

of a given mode regardless of what address is provided. Table 2.1 shows the mode value

and the purpose of each of the bits in the configuration registers.

Table 2.1: Register modes and usage

While the registers need to be provided with data, address, and mode information,

only a single 8-bit bus is used to provide this. On the positive edge of the STB, input

address and mode information are stored in a special purpose register that drives the

internal ADDR and MODE busses (see Figure 2.3). On the negative edge of STB, data

is then stored in all enabled registers.

The common channel also contains biasing circuitry for many of the analog circuits

in the signal channels. Bias currents and reference voltages are generated here and

14

Figure 2.2: System level diagram of the common channel

15

Figure 2.3: The address, mode, & data shared bus scheme

distributed to each of the signal channels. More information on these circuits is presented

in Chapter 3.

2.3.2 Signal channel

The input to a signal channel comes from a detector in the form of a pulse with an

exponential rise in voltage and an exponential decay. The programmable Nowlin circuit

acts as the input stage to the signal channel. The Nowlin circuit is used to create a

differential output from this single-ended input pulse. One leg of this differential signal

is composed of a constant fraction of the input pulse. The other leg of this output is a

delayed version of the input pulse. This delay time is determined by an RC time constant

that is configurable by changing the value of a programmable capacitor. A high pass

filter output is provided by the Nowlin circuit as well, and is used by the leading-edge

discriminator circuit.

The differential outputs of the Nowlin circuit are used as inputs to a zero-crossing

discriminator (Figure 2.4). This discriminator is created by cascading several amplifiers

together and connecting the final output to a high speed comparator. This circuit will

provide a digital output that is a logic high (3.3V) when the two differential output

voltages from the Nowlin cross the 0V threshold when referenced to analog ground

(AGND). This will allow the circuit to produce an output independent of the input pulse

amplitude [Engel, 2016].

A dynamic DC offset cancellation loop is used to remove the effects of systematic

16

DC offsets. Without this DC compensation loop, the output comparator would be

permanently stuck in one state regardless of input from the Nowlin circuit. This same

DC cancellation loop is also used in the leading-edge discriminator.

Figure 2.4: Zero cross discriminator with DC offset cancellation

The input to the leading-edge discriminator comes from the high-pass filter, or “fast

shaper”, in the Nowlin circuit. The leading-edge discriminator (Figure 2.5) has a user

controllable threshold that is compared against the input from the Nowlin circuit. This

threshold will be set just above the noise floor, ensuring that the comparator will only

fire in response to a real pulse coming off of a detector and not just inherent noise in

the circuit. This threshold can be made negative by applying a logic high (3.3 V) to the

NEG POL input pin. The output of the leading edge discriminator is then used to qualify

the zero-cross detector.

Figure 2.5: Leading edge discriminator with DC offset cancellation

17

The qualified zero-cross discriminator pulse is used as input for a narrow pulse circuit

that triggers the one-shot. Figure 2.6 shows this in more detail. The one-shot circuit

creates the channel’s output timing pulse. It is provided with a two-bit pulse-width

selection bus that allows the user to configure the output width of this pulse between

50 nsec and 500 nsec. There is another one-shot circuit used to create a lockout period

which will prevent the creation of an output timing pulse regardless of the presence of

any stimuli from the narrow pulse generator. This lockout time is also user configurable

with a control voltage provided by a 5-bit DAC in the common area. The lockout feature

can also be completely turned off by the user if desired.

Figure 2.6: System level diagram of one-shot stage

A final output generation stage is used to qualify the timing pulse as well and create

other useful channel outputs. The timing pulse for a channel should not be present on the

pin of the chip package if the global enable signal is not present, or the channel enable

bit is not set. Therefore the timing pulse is ANDed with these two signals before going

off-chip as seen in Figure 2.7. The digital test point, multiplicity, and global channel OR

outputs are also created in this stage and explained in more detail in the next chapter.

18

Figure 2.7: Timing pulse output qualification

2.4 Chip Pinout

The CFD16C will be packaged in a 64-pin QFN plastic package. The pinout is detailed

in Table 2.2. Pins with no electrical connection to the chip die are labeled as NC (no

connection).

Table 2.2: Pinout of CFD16C

19

CHAPTER 3

ELECTRICAL LEVEL DESIGN

3.1 Fabrication Process

The IC described in this thesis will be fabricated in a 0.35 micron n-well process. The

process supports two poly and 4 metal layers. Double poly capacitors, BJTs (Bipolar

Junction Transistors) and a high-resistance layer are all available to the designer. NFET

(N-type Field Effect Transistor) device properties are given in Table 3.1 while PFET

(P-type Field Effect Transistor) device properties are available in Table 3.2. These

parameters are provided to the reader because they may prove useful for understanding

transistor-level circuits and evaluating design decisions discussed later in this chapter.

Threshold Voltage VTN 0.5 V

Transconductance Parameter KPN 170 µA
V 2

Bulk Modulation Factor γN 0.6 V
1
2

Early Voltage per Unit Length VEN 21.1 V
µm

Gate Oxide Thickness tox 7.6 nm

Gate Oxide Capacitance per Unit Area Cox 4.5 fF
µm2

Threshold Voltage Matching Coefficient AV TN 9.4 mV · µm

Transconductance Matching Coefficient AKPN 0.7 % · µm

Table 3.1: NMOS Parameters

3.2 Common Channel

The CFD16C is composed of sixteen signal channels and a single larger common

channel. As the name implies, the common channel contains configuration and biasing

20

Threshold Voltage VTP -0.7 V

Transconductance Parameter KPP 60 µA
V 2

Bulk Modulation Factor γP 0.4 V
1
2

Early Voltage per Unit Length VEP 17.7 V
µm

Gate Oxide Thickness tox 7.6 nm

Gate Oxide Capacitance per Unit Area Cox 4.5 fF
µm2

Threshold Voltage Matching Coefficient AV TP 14.5 mV · µm

Transconductance Matching Coefficient AKPP 1.0 % · µm

Table 3.2: PMOS Parameters

circuitry that is common to all of the signal channels. These include a power on reset circuit,

a signal ground generator, a bandgap reference, and a pair of bias current generators.

3.2.1 Configuration registers

There are three registers in the common channel as well as one in each of the signal

channels. These registers were designed by selecting digital standard cells provided in our

PDK (Process Design Kit). The registers are D-registers possessing an enable input. The

enable signal is active when a specified register’s address and mode have been selected. A

single 8-bit wide bus is used to present address, mode, and data to each of the registers.

An 8-bit register in the common channel will register ADDR and MODE on the rising

edge of STB, with ADDR being in the upper four bits. The 8-bits of data are then

registered on the falling edge of STB. This decoding logic is presented in Figure 3.1.

The ADDR and MODE bits are compared against a hard-coded value using the XOR

and NOR gates. The hard-coded values are set to match the address of the channel the

register is located in, as well as the mode that should select the specific register. The

output of the ADDR decoder circuit is then ORed with the MSB of the MODE field so

21

Figure 3.1: Register address and mode decoding

that all registers of a given mode can be selected if the global mode bit is set.

3.2.2 Power on reset circuit

A power on reset circuit is used to start the PTAT bias current generator circuit. The

POR circuit was used from the provided analog cells library with the AMS design kit.

When power is applied to the CFD16C, the power on reset (POR) circuit generates a

single low active reset pulse. This reset pulse is guaranteed to be at least 2 µsec long.

The POR signal pulse is used to start the PTAT current reference. This PTAT current

reference circuit can converge on a 11.5 µA or 0 A output current when the CFD16C first

receives power [Hastings, 2001], but the 0 A solution is not useful. This long reset pulse

guarantees that the PTAT current generator will start correctly and provide an 11.5 µA

bias current.

22

3.2.3 Signal ground generator

In each of the signal channels the analog input circuitry is referenced to a analog

signal ground. This signal ground, called AGND, and must be at a potential half way

between AVDD and AVSS. An analog ground generator circuit was provided in our PDK

analog cell library so we used it. The signal ground generator circuit can be trimmed

to a specific voltage using three trim bits. The signal ground generator has a nominal

reference voltage of 1.63 V and can be trimmed according to Table 3.3.

Table 3.3: Signal ground generator trim values

3.2.4 Bandgap voltage reference

A bandgap voltage reference is a circuit that provides a temperature and power

supply independent voltage [Allen, 2012]. The bandgap voltage reference used in this

design was selected from the analog cells library, and is a known working design. The

bandgap voltage reference is used to provide a 1.2 V reference that is independent of

temperature or power supply noise. The bandgap voltage is created by generating a

PTAT current and then passing it through a resistor which in turn is placed in series with

a diode-connected parasitic bipolar PNP transistor [Allen, 2012]. The PTAT current has

a positive temperature coefficient while the PNP transistor has a negative temperature

coefficient creating a reference voltage with a temperature coefficient of only -87 µV
◦C

(over

23

the range of temperatures that the IS is expected to operate over) as can be seen in

Figure 3.2.

This bandgap circuit produces an output voltage of ≈ 1.2V with near zero temperature

independence. The bandgap reference is further filtered by an RC lowpass filter before

being used by any other circuits. This is mostly due to the sensitivity of the circuits that

use the bandgap reference to noise, rather than an inherently noisy bandgap reference.

3.2.5 PTAT current reference

A PTAT current reference was also selected from the analog cells in our PDK. This

current reference produces a bias current between 7.3 µA and 17.8 µA (across process

corners) with a nominal value of 11.5 µA. This bias current is proportional to absolute

temperature and is used to bias all of the amplifiers on the chip. A weakly or moderately

inverted FET has a transconductance linearly proportional to bias current but inversely

proportional to absolute temperature. Thus by using PTAT currents for the moderately

inverted FETs in the amplifier designs, the transconductance of the FETs becomes

independent of temperature [Allen, 2012]. Figure 3.3 shows the temperature dependence

of the PTAT current reference circuit.

3.2.6 Zero-tempco current reference

In order to function correctly, some of the circuitry in the signal channel needs to be

biased with a current that has no (or at least very little) temperature dependence. This

zero temperature coefficient (ZTC) current was generated using the op-amp circuit shown

in Figure 3.4. In this circuit, the temperature independent bandgap voltage is applied to

the inverting terminal of an opamp. The output of the opamp connects to the gate of

a PFET whose drain is connected to a zero temperature coefficient 100 kΩ resistor. A

feedback connection to the non-inverting terminal of the op-amp is made to the drain of

the PFET as well.

24

Figure 3.2: Bandgap temperature dependence.

25

Figure 3.3: PTAT current reference temperature dependence.

26

Because of this feedback connection, the opamp will drive the gate of the PFET to

a voltage that ensures there is no potential difference between the inverting and non-

inverting terminals of the opamp [Baker, 2010]. This means the voltage drop across the

ZTC resistor has to be equal to the bandgap voltage and so the current through the PFET

has to be 12 µA. This ZTC current reference produces a current with a temperature

dependence of only 2.07 nA
◦C

as seen in Figure 3.5.

The ZTC resistor is made from a resistor with positive temperature coefficient (rpoly2),

and one that has a negative temperature coefficient (rpolyh). The ratio to achieve

temperature independence in this process is ≈0.56 rpoly2 to 0.44 rpolyh. Since a 12

µA ZTC current is desired, a 100 kΩ resistor was made using a 56 kΩ rpoly2 resistor

and a 44 kΩ rpolyh resistor. This ZTC current is replicated using 17 current mirrors to

provide one for each channel, as well as one for the lockout DAC in the common channel.

The ZTC currents are used to give the DAC circuits an output that does not depend on

temperature.

Figure 3.4: Zero temperature coefficient current generator.

27

Figure 3.5: Zero temperature coefficient current temperature dependence.

28

Table 3.4: Zero tempco current generator device sizes.

3.2.7 Lockout DAC

It is desirable to prevent the one-shot circuit in the signal channels from re-firing for a

given amount of time after they have fired. The length of this lockout time may need to

change depending on the nature of the experiment. To do this, a lockout time can be

set that is inversely proportional to the current at the output of a 6-bit digital to analog

converter (DAC).

The DAC is implemented as a current scaling DAC using a R2R ladder topology

[Baker, 2010] that makes use of MOSFETs as resistors. While MOSFET resistors are

generally non-linear and not suitable for use in DAC design, a special technique was

used in this design to ensure linearity for current division [Bult and Geelen, 1992]. This

technique allowed for the R2R ladder to be made much smaller than using traditional

poly resistors, while having very good current division capabilities. The technique relies

on the excellent matching characteristics of FETs.

The input to the DAC is a ZTC current coming from the common channel. The

R2R ladder equally divides the input current in half and uses this divisor current as the

input to the next stage of the DAC, as seen in Figure 3.6. The other half of the current

is mirrored using a cascode current mirror to create part of the output current of the

DAC (Figure 3.7). The use of a cascode current mirror gives an extremely high output

impedance of

Zo = rds7 · gm7 · rds6 (3.1)

A terminator circuit is used to ensure the current splits in half for the last stage (Stage0).

The NFET M8 in Figure 3.7 acts as a switch to only allow current to flow when the

29

Figure 3.6: 6-bit bipolar DAC

control bit, D< i >, is a logic 1. The currents are summed up and mirrored with another

cascode current mirror in a final output stage of the DAC (Figure 3.8). Either a PFET

current mirror or NFET current mirror will be used depending on the sign bit. If the

sign bit is high, denoting negative polarity is enabled, then the NFET current mirror will

sink current from the DAC output. Conversely, if the sign bit is high, then the PFET

current mirror sources current to the output.

For the lockout voltage, the DAC will only source current to the output where it is

passed through a diode connected NFET to create a voltage. The same DAC design is

also used for the leading-edge discriminator threshold, and must be bipolar in that design.

Table 3.5: Device sizes for single stage of current scaling DAC

30

Figure 3.7: One stage of DAC using R2R ladder

Table 3.6: Current scaling DAC output device sizes

31

Figure 3.8: DAC output current stage

32

3.2.8 Multiplicity output buffer

One of the outputs of the CFD16C chip is an analog voltage that is proportional

to the number of channels that have fired. To create this output, each of the signal

channels outputs a copy of the PTAT current but only when the channel has fired. All of

these PTAT currents are summed up using a resistor to create a voltage. However, it is

necessary to buffer this output voltage before sending it off chip. For this, a source follower

output buffer is used to present a high input impedance, but low output impedance of

1
gmM2

(here about 230 Ω).

The source follower circuit, shown in Figure 3.9, is biased with a 1 mA current using

resistor R1. The signal channel multiplicity currents are summed up using R2 creating

an output voltage on the source of M3. This output voltage is 1.15 V when no channels

have fired and 2.7 V when all sixteen channels have fired. The circuit can accommodate

load capacitance up to approximately 30 pF with a settling time of less than 50 ns. The

capacitor C1 provides compensation and ensures that the circuit has real poles so that

the step response displays little or no ringing.

Table 3.7: Multiplicity buffer device sizes

3.3 Signal Channel

The CFD16C is made up of sixteen signal channels capable of producing a precise

output pulse. Each of the signal channels is identical but contain configurable analog

blocks that can be changed on a per channel basis. The signal channel consists of a

Nowlin circuit, leading-edge detector circuit, zero-crossing detector circuit, a one-shot

33

Figure 3.9: Multiplicity output buffer.

circuit, and an output generation circuit.

3.3.1 Programmable Nowlin circuit

In order to meet our walk and jitter specifications over such a large range of rise

times (2 nsec to 192 nsec), the proposed Nowlin circuit must be highly programmable.

To accomplish this, a “coarse” and “fine” grain adjustment of the Nowlin circuit was

used. To do this, two modes are provided for the Nowlin circuit: a “long” mode (coarse)

and “short” mode (fine). In the short mode the circuit must handle rise time constants in

the range from 1 nsec to 16 nsec (in 1 nsec increments) while in long mode the IC will

accommodate risetimes from 12 nsec to 192 nsec (in 12 nsec increments).

The fine adjustment is accomplished through the use of a programmable capacitor

array. In other words, 10 - 90 % ristimes in the range of 2 nsec to 420 nsec will be

supported by the IC. A 4-bit digital code allows the user to select one of 16 capacitor

values from 0.5 pF to 8 pF (in 0.5 pF increments), thereby providing the fine adjustment.

34

The circuit for the “short” mode is presented in Figure 3.10 while the circuit for the long

mode is given in Figure 3.11.

Figure 3.10: Nowlin circuit for short mode

Figure 3.11: Nowlin circuit for long mode

The fraction K = R2
R1+R2

helps determine the amount of underdrive. A typical value

for K is 2
3

and is what was chosen for this application. It is important that the comparator

35

in the zero-cross circuit be driven low first and then high since it is the low-high transition

that marks the onset of the pulse in an amplitude independent manner. It is important

that the comparator underdrive and overdrive be comparable.

While the input to the Nowlin circuit is an exponential unipolar pulse with amplitude,

≈A, and risetime constant, τr. The signal associated with the differential output (i.e.

difference in voltage on the ZC+ and ZC- nodes) from the Nowlin circuit, however, is a

bipolar pulse centered around AGND. The bipolar signal crosses through zero when the

attenuated input signal and the delayed input signal are equal to one another. In other

words

k · A ·
[
1− e

−t
τr

]
= A ·

[
1− e

−(t−to)
τr

]
(3.2)

Notice that the amplitude, A, cancels out in the above expression and the time at

which this bipolar pulse crosses through zero is independent of pulse amplitude. The

delay, to, is approximately equal to the Nowlin time constant, τn ≈ τr. This results in a

zero-crossing time

tz ≈ τr · ln
[
e− k
1− k

]
≈ 1.8 · τr. (3.3)

We shall refer to the slope of this signal, when crossing through zero, as the slew rate

(SR) given by

SR ≈ A

4 · τr
. (3.4)

For the minimum pulse amplitude, A, of 15 mV (and r value of 100) and a rise time

constant, τr, this results in a SRmax of 1.7 V
µs

. One can see from Figure 3.12 that it is

important that the Nowlin delay constant be matched to the risetime constant. If the

Nowlin delay time constant is much too short, we have insufficient underdrive to the

comparator to force it to the low state. If the delay time constant is much too big, then

the underdrive is large but the slew rate suffers. Setting the Nowlin delay time constant

approximately equal to the rise time constant of the input waveform provides a good

compromise between large underdrive and high slew rate.

36

Figure 3.12: Input signal with 3 nsec risetime constant showing Nowlin delay effects

C1 and the series combination of R1 and R2 create a high pass filter (or “fast shaper”)

whose output is called LE+. The corner frequency of this high pass filter is given by

fc = 1
2π·(R1+R2)·C1

. This gives a corner frequency of ≈1.3 MHz in the short mode and ≈35

KHz in the long mode. This high pass filter output is used as input to the the leading

edge discriminator.

The resistor R3 along with the programmable capacitor C2 form a delay circuit. The

delay time is given by τn = R2 · C2 and is referred to as the Nowlin delay constant. The

programmable capacitor in the Nowlin circuit is created by using switches (i.e. transmission

gates) to connect individual capacitors in and out of circuit. Two transmission gates

(t-gates) per capacitor are used to accomplish this. The programmable capacitor circuit

can be seen in Figure 3.13.

In this configuration when a bit from the programmable capacitor bus is on (ie. 3.3V),

the capacitor connects in parallel with C1 from Figure 3.13, adding more capacitance to

37

the ZC+ node in the Nowlin circuit. If the control signal is off (ie. 0V) then the capacitor

is shorted out to AGND discharging it and removing capacitance from the ZC+ node.

In total there are four of these capacitor circuits, one for each bit of the programmable

capacitor bus. Each capacitor is binary weighted with the following values: 0.5 pF, 1

pF, 2 pF, and 4 pF. This gives a total in circuit capacitance of 8 pF and a minimum in

circuit capacitance of 0.5 pF. Table 3.8 shows the bit order of these capacitor elements.

Referencing this table shows that the total capacitance at the ZC+ node will be

C2 = D · 0.5pF + 0.5pF (3.5)

where D is the decimal value of the 4-bit programmable capacitor bus.

The programmable capacitor must be set properly in order to ensure proper operation

of the signal channel. Using Table 3.8 an appropriate time constant must be set. This

time constant should be chosen such that it is as close as possible to the rise time constant

expected from the exponential input pulses coming into the Nowlin circuit.

Table 3.8: Programmable capacitor values and time constants.

38

Figure 3.13: Programmable capacitor circuit.

3.3.2 Dynamic offset cancellation loop

For both the zero-cross discriminator and leading-edge discriminator to work properly

DC offset voltages need to be canceled out before an input pulse arrives. This is achieved

by placing a very slow amplifier in the feedback path. For the purposes of this amplifier

we will model the forward path using a single pole model.

A(s) =
K1

1 + s
ω1

(3.6)

We will do the same for the slow amplifier in the feedback path.

B(s) =
K2

1 + s
ω2

(3.7)

The closed-loop response is then given by

Af (s) =
A(s)

1 + A(s) ·B(s)
(3.8)

39

Using the expressions for A(s) and B(s) given above and assuming K = K1 ·K2 is large,

then the closed-loop gain is approximately given by the expression

Af (s) ≈
1

K2

·
1 + s

ω2

1 + s
K·ω2

+ s2

K·ω1·ω2

. (3.9)

In the given application, we will choose ω2 � ω1. Under this assumption, the lower and

upper corner frequencies, ωL and ωH , become

ωL ≈ K · ω2 and ωH ≈ ω1 (3.10)

One observes that since K is large, the value of ω2 must be at an extremely low frequency

if fL is to be less than 10 kHz. The frequency ω2 is set by the time constant formed by

the output resistance of the amplifier in the feedback path and a double-poly capacitor

placed on the output of the amplifier. The value of the capacitor is 10 pF in the zero-cross

circuit but 2 pF in the leading-edge circuit.

The key component of the DC offset cancellation is the slow amplifier in the feedback

path. Since the amplifier only needs to drive a capacitive load, a Symmetric Miller OTA

(Operational Transconductance Amplifier) was utilized. The circuit is given in Figure 3.14.

The circuit makes use of source degeneration (resistive PFETs M11 and M12) to reduce

the transconductance of the OTA. The transconductance is further reduced by reducing

the bias currents flowing through the input devices M1 and M2. Bias current is diverted

to ground using PFETs M5 and M6. The gain of the circuit is quite low (around 30 dB).

The design is not fully complete at the present time so device sizes for this OTA will not

be given.

3.3.3 Zero-cross discriminator

The purpose of the zero cross detector is to produce a digital signal which marks the

onset of the analog input pulse [Simpson et al., 1994]. It is important that this time be

independent of pulse amplitude, A. The zero-cross circuit is constructed by cascading N

40

M
1

5

P
M

O
S

N
M

O
S

M
1

4

M11

PMOS

M
1

3

P
M

O
S

M12

PMOS

M
1

P
M

O
S

N
M

O
S

M
3

M
1

6
P

M
O

S

M
7

P
M

O
S

N
M

O
S

M
9

M
5

P
M

O
S

N
M

O
S

M
1

7

N
M

O
S

M
1

8

I1 3
6

0
n

A

M
2

P
M

O
S

N
M

O
S

M
4

M
8

P
M

O
S

N
M

O
S

M
1

0

M
6

P
M

O
S

A
V

D
D

in
m

in
p

o
u

tp

Figure 3.14: Schematic of low bandwidth, low gain OTA.

41

differential amplifier stages (where we have chosen N equal to 5) each possessing a very

wide bandwidth, but relatively low-gain (≈ 4.5) with the final output stage driving a

simple, yet very fast analog comparator.

The purpose of cascading a relatively large number of high-bandwidth but low-gain

stages is to force linear operation where delay is independent of amplitude. In short, the

cascaded amplifier, which we shall refer to as the “pre-amplifier” serves as a slew rate

enhancer. For a first-order system, it is well-known that if the input risetime is not to be

severely degraded, the bandwidth, BW, of the amplifier must obey the following equation

BW >
0.35

t10−90

≈ 80 MHz (3.11)

In the equation above we have assumed the shortest risetime constant that we must

accommodate, i.e. 2 nsec. Since we are cascading N (here N is 5) stages, the BW of each

stage must be increased by
√
N ≈ 2.2 resulting in a differential amplifier bandwidth of

180 MHz if the overall BW is to be at least 80 MHz. If the stage gain, G, is approximately

4.5, then the GBW of a single differential amplifier stage must exceed 800 MHz. The

overall gain of the pre-amplifier is

Gain = GN = 4.55 ≈ 2000 or 66 dB. (3.12)

Thus, the highest rate of change at the output of the pre-amplifier is approximately

2000 times larger than the input worst case rate of 1.8 V
µs

. Hence, the slew rate of the

differential amplifier must be at least 3.6 V
nsec

if the pre-amplifier is to be linear for signals

near the zero-crossing point. In other words, CFD walk performance will be limited by

how large a slew rate for the differential amplifier can be achieved. Increasing the effective

voltage of the input devices maximizes slew rate but how large of an effective voltage that

can be used is ultimately limited by the supply voltage.

The heart of the zero cross discriminator is a wide-bandwidth low-gain differential

amplifier. The amplifier design used is shown in Figure 3.15. The device sizes and bias

42

currents are given in Table 3.9. The value ng represents the number of fingers (i.e. gates)

to use in the layout.

NMOS
M1

M3

PMOS

NMOS
M2

NMOS
M4

R2

R

R1

R

NMOS
M5

IB

I

inp

outpoutm

inm

AVDD

Figure 3.15: Schematic of low-gain high-bandwidth differential amplifier.

Table 3.9: Device Sizes for Zero-Cross Detector Differential Amplifier

The value of the resistors, R1 and R2, is 17 kΩ and the pair of matched resistors are

implemented using a high resistance poly 2 layer. Transistor M3 was added so that the

output common-voltage could be set to approximately VDD
2

). Note, the current flowing

through transistor M3 is the same as the current, IB, flowing through transistor M4.

43

Hence the drain of M3 is a virtual ground in much the same way that the drain of M4 is

a virtual ground. Hence,the addition of M3 has no impact on the speed of the amplifier.

The low-frequency gain of stage is

A0 = gm1 ·R ≈ 4.6 (3.13)

and the bandwidth of the stage is

BW =
1

2 · π ·R · CL
(3.14)

where CL is the total capacitive load on the output node.

The output swing for the differential amplifier is 2 ·R · IB, centered around VDD
2

, where

IB is the tail current or 46 µA. Transistor M5 mirrors the PTAT primary current of 11.5

µA and hence the value of 4 for the “ng” parameter in Table 3.9

Also crucial to the zero cross detector is a very fast high-bandwidth comparator. This

circuit is shown in Figure 3.16. Transistors M1 - M4 make up a simple symmetric Miller

OTA. The input common-mode voltage is assumed to be approximately half the supply

voltage. The DC bias current through each of the 4 transistors is approximately 200 µA.

The resulting GBW exceeds 3 GHz while the low-frequency open-loop gain is 26 dB.

Device sizes and bias currents are given in Table 3.10.

Table 3.10: Device Sizes for Zero-Cross comparator

The performance is identical for both positive and negative polarities. This is because

for the negative polarity, transmission gates are used to flip the inputs to the comparator.

44

NMOS

M1

PMOS

M3

NMOS

M2

PMOS

M4 PMOS

M6

NMOS

M5

PMOS

M8

NMOS
M7

inp

AVDD

dout

inm

Figure 3.16: Schematic of high-bandwidth, very fast comparator.

This makes negative polarity pulses functionally identical to positive polarity pulses as

seen from the input of the comparator, simplifying the design.

3.3.4 Leading-edge discriminator

The leading-edge circuit is very similar to the zero-cross circuit. The differential output

voltage from the leading-edge pre-amplifier must be converted to a single-ended current.

This is done using the linear transconductor shown in Figure 3.17. The transconductance

of the stage is 1
R

where R is 17 kΩ.

The leading-edge comparator is presented in Figure 3.18. It is very similar to the

zero-cross comparator except two resistive voltage dividers have been added, one on

the inverting and one on the non-inverting inputs. All resistors are 34 kΩ so that each

divider can be represented by a Thevenin voltage equal to one-half the supply voltage

and a Thevenin resistance of 17 kΩ. The divider on the non-inverting input is used to

convert the sum of the differential current output from the pre-amplifier and the current

output of the DAC into a voltage which is then compared to VDD
2

. Just as with the

zero-cross comparator, the inputs of the leading edge comparator are swapped in the

45

NMOS
M1

M5

PMOS

NMOS
M11

NMOS
M3

NMOS
M4

R1

IB

NMOS
M2

M6

PMOS

M7

PMOS

NMOS
M9

M8

PMOS

NMOS
M10

inm inp

outp

AVDD

Figure 3.17: Schematic of differential voltage to single-ended current converter.

Table 3.11: Differential to single ended amplifier device sizes

46

negative polarity mode.

NMOS

M1

PMOS

M3

NMOS

M2

PMOS

M4 PMOS

M6

NMOS

M5

PMOS

M8

NMOS
M7

R1

R

R2

R

R3

R

R4

R

inp

AVDD

dout

Figure 3.18: Schematic of leading edge comparator.

Table 3.12: Leading-edge comparator device sizes

3.3.5 Output one-shot with lockout features

The output timing pulse for each of the channels is generated from a one-shot circuit

with lockout capabilities. A one-shot circuit is a circuit that creates a fixed width output

pulse in response to a narrow input pulse. The one-shot circuit in the signal channels is

what produces the output timing pulses used to start the gated integrators and the TVCs

on the PSD8C chip. Recall that the gating of the integrators is relative to the rising

edge of the one-shot output while the TVC is started by the trailing edge of the one-shot

47

output. Thus, both edges of these one-shot output pulses must exhibit low timing jitter.

The one-shot circuit design is shown in Figure 3.19.

Figure 3.19: One-shot circuit with lockout

The one-shot circuit works by utilizing a D-type flip flop with an asynchronous clear

input. When the CFD circuit (i.e. Leading-edge and Zero-cross discriminators) produces

an output, the pulse width can be variable depending on the conditions in the experiment.

Because of this a narrow pulse generator is used to produce a fixed 5 nsec wide pulse

in response to any width CFD output. This narrow pulse is used as a clock signal for

this D-flip flop, provided lockout is disabled or the circuit is not in a lockout state. Since

the input to the flip flop is tied to AVDD (logic high) the output will transition to a

logic high state in response to the CFD circuit output. This causes a switch to close

allowing a current source to charge a capacitor at the input of a comparator. Charging

this capacitor produces a ramp voltage on the non-inverting input of the comparator, as

seen in Figure 3.20.

The inverting input to the comparator is connected to a low pass filtered bandgap

voltage. Thus, when the ramp input reaches 1.2 V the comparator outputs a logic high.

The comparator output triggers the CLR input on the D-flip flop to go low, forcing

the output of the flip flop into a logic low state. This causes the switch controlling the

current source to open and the switch in parallel with the capacitor to close, shorting the

48

Figure 3.20: Comparator ramp input

capacitor out and discharging it. The CLR input on the flip flop can also be triggered

by a master reset provided by the RST L pin on the CFD16C. By changing the value of

the programmable capacitor the charge time changes, effectively changing how long the

D-flip flop will be in the logic high state (i.e.. it sets the width of the timing pulse).

The lockout one-shot circuit works on a similar principle but has a non-programmable

capacitor (250 fF) with a programmable charge current. Changing the charge current

allows the capacitor to charge faster or slower, changing the lockout time. Two lockout

modes are also available by writing to a mode bit as seen in Table 2.1. When Lockout

Mode is a logic high, shorter ≈110 nsec time steps are provided for a total lockout time

of 3.4 µsec. When the Lockout Mode is a logic low, a long mode is used providing ≈565

nsec time steps for a total lockout time of 16.6 µsec. The lockout one-shot provides an

active low output as opposed to the active high output of the timing pulse one-shot.

3.3.6 Final output generation

All of the signal channel outputs are generated in a final output generation stage.

In this stage the timing pulse, multiplicity current, global OR, and test point outputs

are produced. While the timing pulse is generated in the previous stage by the one-shot

49

circuit, it is necessary to further qualify this output before sending it off chip. Each signal

channel can be individually enabled or disabled using a configuration bit, or the whole

CFD16C chip can be disabled using a global enable (fast) input pin. If the global enable

signal or the channel enable bit are not asserted then the timing pulse from the one shot

will not be present on the output pin and will not trigger the global OR output.

A number of test point nodes from within the channel can be selected to be routed to

a pin on the chip package. These available test point nodes are detailed in Table 3.13. A

multiplexer at the end of each channel controls which test point is used. To prevent all

sixteen channels from trying to drive the test point pin at once, a tri-state buffer with

enable is used. This enable signal will only be active for the channel whose address is

currently selected on the ADDR bus, and all other channels will have their test point

outputs put into a high impedance state.

Table 3.13: Test point multiplexer outputs

The multiplicity current is produced in response to the timing pulse output firing.

Once the timing pulse has fired and been qualified, a PFET switch is turned on and

allows a copy of the PTAT current to be sourced to the multiplicity buffer in the common

channel. All of the channel multiplicity current output are sourced to the same node so

that the voltage across the resistor in the multiplicity buffer will be determined by the

sum of all of the currents from the fired channels.

The global OR signal is produced by the timing pulse as well. This output is generated

50

using a pseudo-NMOS NOR gate. As shown in Figure 3.21, in a pseudo-NMOS NOR

gate a PFET acts as a pullup for parallel connected NFETs [Weste, 2006]. Thus if any

one NFET is turned on then the output node will be pulled to AVSS. Each channel

contains one of these NFETs with the PFET and a CMOS inverter being in the common

channel. This allows for a very fast active high logic OR of all of the channels with

reduced complexity since the NOR gate is distributed across all channels (reducing the

amount of interconnect needed).

Figure 3.21: Fast pseudo-NMOS NOR

Table 3.14: Pseudo-NMOS NOR gate device sizes

51

CHAPTER 4

SIMULATION RESULTS

4.1 Verification of Circuits in Common Channel

The common channel contains configuration registers and biasing circuitry. In order

to test the configuration, a System Verilog test fixture was used to load each configuration

register with data. Setting the configuration registers agreed with the expected behavior

from each of the bits outlined in Table 2.1. The biasing circuitry was verified by observing

the output of the circuits being biased in the signal channels. The channel circuitry

worked as expected as well confirming that the biasing circuitry was functioning within

specification.

4.2 Walk Characteristics of CFD Circuit

Time walk is is used to describe systematic variation in the rising edge of the discrim-

inator output signal as a function of pulse height. If we assume a single-pole response

for the analog comparator with a gain-bandwidth-product of GBWc, it is not difficult to

show that the variation in propagation delay, ∆tpd, due to input pulse amplitude is

∆tpd ≈
√

VDD
2 · π ·GBWc ·GN · SRmin

(4.1)

where VDD is the supply voltage, G is the gain of a single differential amplifier stage, N is

the number of stages, and SRmin is the SR with a pulse amplitude of 15 mV. Table 4.1

summarizes the expected walk performance (over the dynamic range of 15 mV - 1.5 V)

for three representative risetime constants.

In reality, the time walk may increase at low amplitudes because of residual offset.

Ultimately, how well the discriminator performs at low amplitude will depend on the

effectiveness of the dynamic offset cancellation loop. It can be shown that residual offset

52

alters the time at which one crosses zero as given by

∆tcross ≈ τr ·
[

Vos
(1− k) · A

]
(4.2)

where Vos is the residual input referred offset and A is the amplitude of the input pulse.

It is important that the residual offset be driven to the sub-mV level. The “slow” DC

offset cancellation loop has to be “slow” enough so as not to interfere with the pulse as it

passes through the zero-cross discriminator but yet fast enough so that pulse repetition

rates as high as 1 kHz can be accommodated.

Table 4.1: Time walk as function of risetime constant, τr for G = 4.5, N = 5 and

GBWc = 3GHz.

The values given in Table 4.1 assume no residual offset. For the case of τr = 3 nsec, A

= 15 mV, and a residual offset of just 200 µV , the effect of the residual offset is to add an

additional 130 psec of walk resulting in a value of 430 psec. The typical simulated walk

performance for a signal with a rise time constant of 3 nsec is presented in Figure 4.1.

Two hundred Monte Carlo runs were performed and the results of this simulation is

presented in Figure 4.2.

As can be seen from Figure 4.2, the walk across all process and mismatch is centered

between 400 psec and 600 psec for a three sigma design. The expected walk performance

is thus within the 500 psec or less design specification. Moreover, given the monotonic and

systematic behavior of the response, calibration techniques can be used to compensate

for the effects of walk.

53

-300

-200

-100

0

100

200

300

10
1

10
2

10
3

10
4

D
e
l
a
y

R
e
l
a
t
i
v
e

t
o

A
v
e
r
a
g
e

(
p
s
)

Input Pulse Amplitude (mV)

Walk Characteristics for Constant Fraction Discriminator

Monte Carlo Run #1

Walk is 486.4 ps

Average delay is 7.6 ns

Figure 4.1: Typical walk performance with a a signal whose rise time constant is 3 nsec.

54

0

200

400

600

800

1000

0 50 100 150 200

W
a
l
k
e

(
p
s
)

Monte Carlo Run Number

Walk Summary Plot for Constant Fraction Discriminator

Figure 4.2: Summary walk performance with a signal whose rise time constant is 3 nsec.

55

4.3 Jitter Performance

Jitter is a consequence of the electronics noise associated with the Nowlin circuit as

well as the noise of the first differential amplifier in the zero-cross discriminator circuit

(where we assume the noise of succeeding stages when referred to the input is negligible).

Worst case timing jitter can be estimated by taking the total integrated noise at the

input to the zero-cross pre-amplifier and then dividing by the worst case SR given above.

The noise voltage is due to the thermal noise of the input devices on the first differential

amplifier stage, the thermal noise of the gain-setting resistors in that stage, and the

thermal noise of the resistors in the Nowlin circuit. Jitter can be minimized by biasing

the input FETs at high current levels and keeping all resistor values small.

σt =
σv
SR

(4.3)

The theoretically predicted jitter performance plot for the short range mode is given in

Figure 4.3 and the expected performance in the long range mode is provided in Figure 4.4.

One observes that for the short range mode, the jitter (as a percentage of the 10-90

risetime of the input signal is less than about 3 percent. For the long range mode this

value only increases to about 5 percent. These values are generally considered to be

”excelllent”.

4.4 Verification of One-Shot

The output of the one-shot provides two important features to the CFD16C: generation

of the timing pulse that starts the TVCs on PSD8C, and a lockout functionality to prevent

mis-firings. For the lockout feature, a wide distribution of programmable lockout times

was desired (i.e. a a logarithmic distribution). Figure 4.5 shows the distribution of the

lockout times available in both the short and long modes. As can be seen from the plots

the distribution is nearly logarithmic, with the lockout time being given by

Tlockout =
K

D ·∆I
(4.4)

56

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40

P
e
r
c
e
n
t
a
g
e

Input Pulse 10 - 90 Percent Risetime (ns)

Ratio of Jitter (1 sigma) to 10 - 90 Risetime of Pulse (Fast Mode)

Theoretical Prediction
Electrical Simulation

In FAST mode we can hanlde 10-90 risetimes up to 35 ns

Figure 4.3: Jitter performance for short time constant mode.

57

0

2

4

6

8

10

0 50 100 150 200 250 300

P
e
r
c
e
n
t
a
g
e

Input Pulse 10 - 90 Percent Risetime (ns)

Ratio of Jitter (1 sigma) to 10 - 90 Percent Risetime of Pulse (Slow Mode)

Theoretical Prediction
Electrical Simulation

In SLOW mode we can hanlde 10-90 risetimes up to 280 ns

Figure 4.4: Jitter performance for short time constant mode.

58

where K is given by the the expression K = C · VC (C is the value of the capacitor in

the lockout one-shot i.e. 0.25 pF), D is the digital code word given to the lockout DAC,

and ∆I is the step-size of the lockout DAC. VC is peak amplitude of the voltage ramp

generated within the lockout circuit. The ∆I term will change depending on the lockout

mode, being 380 nA in short mode and 38 nA in long mode.

Figure 4.5: Lockout times for short and long modes

For process variance and mismatch, 20 Monte Carlo simulations were run and showed

acceptable variance in the trailing edge of the one-shot timing pulse (Table 4.2). This

result is within two sigma, and it is expected that across all process and mismatch a

variance of no more than ±5 nsec in the trailing edge of the one-shot pulse is expected.

The primary one-shot that creates the output timing pulse needs very low jitter and

low variance from process and mismatch. The jitter proved to be accurately modeled by

the formula σj = σV
VBG
· Toneshot, where σV is the noise voltage in the current source (PFET

current mirror) charging the one-shot capacitor in Figure 3.19 and VBG is the bandgap

59

voltage. We estimate the jitter to be approximatlely 8 ps for the 50 ns wide output pulse

while the 500 ns wide output pulse will display 25 ps of jitter. The noise associated with

the current source is not 10 time worse (but rather just
√

10 time worse) as one might

expect because a larger capacitor, C, was used (5 pF versus 0.5 pF for the 50 ns wide

pulse). The use of the larger capacitor value reduces σV .

Table 4.2: One-shot pulse width variation from process and mismatch

4.5 Performance Characterization of DAC

The 6-bit bipolar DAC needed to have excellent integral non-linearity error (INL)

and differential non-linearity error (DNL) of less than 0.5 least significant bits (LSBs).

Differential non-linearity describes how much the output changes for each increment of

the digital code word for the DAC [Allen, 2012]. In an ideal DAC this change would be

exactly the same for each increment (1 LSB) but in reality there are minor differences

between each increment. The accumulation of all of these DNL errors over the whole

range of the DAC is the INL error [Allen, 2012].

Figures 4.6–4.7 show the results of 200 Monte Carlo simulations. With each separate

Monte Carlo simulation, the values of the process parameters such as offset voltages,

threshold voltages, etc. will be assigned differently allowing for process variation from

chip to chip to be examined. As can be seen, the INL and DNL errors are almost all

below 0.5 LSBs with only a few exceptions. It can also be seen that the worst case INL

and DNL performance occurred during simulation number 150.

Figure 4.8 shows the worst case run out of all 200 simulations. It can easily be seen

60

Figure 4.6: 6-bit DAC DNL error summary

Figure 4.7: 6-bit DAC INL error summary

61

here than the DNL is well below 0.5 LSB for all increments of the code word except at the

half way point. An average case simulation result is shown below in Figure 4.9, showing

that on average the INL and DNL errors are very good.

Figure 4.8: 6-bit DAC worst case error

4.6 Chip-Level Verification

A large System Verilog testbench was used to test the performance of the chip as a

whole. Every channel was hit with a pulse of increasing amplitudes between 15 mV and

1.5 V. Registers were configured between pulses to adjust circuit parameters and verify

correctness. Full chip simulations have already been completed to test the functionality

of the following:

• Walk characteristics of the output timing pulse

• Both Nowlin time constant modes

62

Figure 4.9: 6-bit DAC average case error

• Both lockout time modes

• Multiple input pulse amplitudes and risetime constants (both polarities)

• Multiple lockout times (matching the predicted values from Eq 4.4)

• Global mode bit to load all registers of a given mode

• Global enable control to disable all 16 channels

• Power on from a cold start

• All four oneshot pulse widths and their tolerance

• Individual channel enable bits to disable specific channels

The walk times were more thoroughly tested using a separate simulation of the CFD

and oneshot circuits; however, since every channel is hit with a different amplitude pulse,

63

the walk perfromance can be observed in a full chip simulation. Walk is easily visualized

in Figure 4.10, which shows the rising edge of an output timing pulse from each channel

after hitting each channel with an input pulse of increasing amplitudes (15 mV on Channel

0, 1.5 V on Channel 15).

4.6.1 Testing Procedure

To verify that the all of the circuits in the IC were functioning properly, a System

Verilog test fixture was created to do the following:

• Pulse power on to simulate the chip turning on from a cold start.

• Set the ADDRDAT bus to the appropriate address/mode and data values on the

proper clock edge.

• Load each configuration register with data to test every possible configuration value.

• Hit every channel with a pulse of different amplitude and risetime to verify channel

circuits are working.

The test fixture consists of three parts: a tasks file that specifies routines for setting

the power, data, and control lines, a driver that specifies which routines to execute and

with what parameters at given times, and a testbench instantiation that is used to output

the driver data to a value change dump file (VCD). Once the testbench was simulated

and a VCD (Value Change Dump) file was generated, a python script was used to convert

the VCD data to piecewise-linear (PWL) which could be instantiated as a voltage source

using Verilog-A. Figure 4.11 details the process of setting up a simulation for the IC.

The tasks file specifies high level routines to manipulate power, data, and control lines

on the IC. The first task to be called in any test driver is the init task, which simply sets

all lines to 0 V to simulate a chip that has been powered off for a long period of time.

Another task, power on, can then be used to simulate power being applied to the chip.

64

Figure 4.10: Sixteen output timing pulses overlayed to demonstrate walk characteristics

65

Figure 4.11: Full chip testing procedure

This allows the IC to be simulated from a cold start rather than from a steady sate. Other

tasks were written to set/clear each of the pin mounted control lines (see Table 2.2), as

well as the STB line to latch address, mode, and data. High level tasks were used to set

mode by allowing the user to specify a named mode (e.g. PCAP, ONESHOT, etc.) rather

than having to remember the correct mode bits from Table 2.1. Similarily, data can be

set by using a task to set a specific function. For example, the one-shot output pulse

width can be set by set os width(<2-bit data>). Finally, tasks are also provided to set the

amplitude, risetime, and firing time of an expoenential input pulse. These analog lines

are provided to a Verilog-A test fixture which can generate the pulse and record data.

The driver file is used to specify the parameters of an experiment. The driver is best

understood as a timeline of events that will happen during a simulation. For example,

the general structure of the driver used for testing the CFD16C was the following:

1. Begin with cold start (i.e. call init task)

2. Power the chip (i.e. call power on)

3. Configure chip appropriateley for incoming pulses (i.e. call tasks to set registers)

4. Enable/disable relevant control lines

5. Generate analog pulses

66

6. Repeat 3-5 for input pulses with different parameters

Once a driver is prepared, it is instantiated in a testbench fixture. The testbench is

used to create a driver object that can be simulated and captures the waveform data in

VCD files. A an example VCD file is shown below.

$date

Jul 2, 2018 10:36:01

$end

$version

TOOL: ncsim 09.20 - s038

$end

$timescale

1 ps

$end

$scope module verilog_driver_tb $end

$var real 64 ! SIG_A $end

$var wire 1 $ SIG_B $end

$var wire 8 % SIG_C $end

$upscope $end

$enddefinitions $end

$dumpvars

r0 !

b0$

b00000000%

$end

#6000

r3.3 !

b1$

b10100101%

#8000

The VCD file header first gives a date and version number for the software that created

the file. The file then specifies the timescale being used. In the example above the

timescale of picoseconds (ps) is used. Next, the variables from the testbench fixture are

given symbols to be referenced by in the $dumpvars section. In the example above there

are three signals: an analog, or real, signal called SIG A, a digital wire called SIG B,

and a digital bus called SIG C. The symbols given to these are !, $, and % respectively.

The $dumpvars section contains information about how the variables change over time.

Timestamps are denoted by a number preceded by a # (e.g. #6000 above). Between

timestamps are the variables that changed at that time and the value that they changed

to, with the value given first followed by the symbol and no space seperating. For analog

signals the value is preceded with an r. The timestamp at the end of a VCD file represents

67

the end time of a simulation.

While the VCD file contains all of the information needed to create a voltage source,

there is no way to use it directly in the Cadence software tools. The simulation tools used

for the design of this IC are, however, able to create voltage sources that are piecewise-

linear in nature by providing a PWL file that describes them. For this a python script

was used to parse the VCD file and create a PWL file with the same data contents. The

script can be modified to change the rise/fall times, logic levels, and scale factors for

analog signals. Once these values are set, running the script will create a PWL file for

each of the symbols defined in the VCD file. A PWL file is similar to a VCD file but

only defines timestamps and values for one signal line instead of many. The standard

PWL format specifies the x-axis (time) first, followed by the y-axis value (voltage) for

that x-input seperated by a space. An exaple is shown below.

0 0

5301000p 0

5302000p 3.3

5921000p 3.3

5922000p 0

6201000p 0

6202000p 3.3

6801000p 3.3

6802000p 0

7101000p 0

7102000p 3.3

7501000p 3.3

7502000p 0

Once the PWL files are generated Verilog-A can be used to create software voltage

sources that are useable by the simulator used for testing the IC. The Verilog-A test

fixture also creates the exponential pulses from the analog voltages created in the System

Verilog driver, and records timing data to a file.

4.6.2 Power dissipation

Power usage will vary depending on if the chip is idle or being hit by a pulse. For this

reason it is worthwhile to look at both average power and peak power dissipation in the

IC. Figure 4.12 shows a breakdown of the average power usage of the various subcircuits

68

in the IC, while Figure 4.13 shows the peak power usage that occurs when 16 input pulses

arrive at the same time.

Figure 4.12: Breakdown of average power dissipation

4.6.3 Chip area usage

Chip area usage needed to be minimized due to the cost of working in the AMS-AG

0.35 micron NWELL process. Figure 4.14 shows how the area was utilized in the IC.

Figure 4.15 shows the full IC layout. The entire chip die uses an area of 1.9 mm x 3.5

69

Figure 4.13: Breakdown of peak power dissipation

70

mm giving a total area usage of 6.6 mm2, only slightly larger than the 6 mm2 we were

aiming for.

Figure 4.14: Breakdown of IC area usage

71

Figure 4.15: CFD16C full layout

72

CHAPTER 5

SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 Summary

The CFD16C was designed as a companion chip for the pulse shape discriminating

IC called PSD8C. CFD16C will allow new experiments to be done with PSD8C that

were previously not possible. The CFD16C provides a precise timing pulse to start

time-to-voltage converters on the PSD8C. The chip is highly configurable, allowing the

following circuit parameters to be adjusted to an experiments needs:

• Timing pulse width control between 50 nsec and 500 nsec

• Leading edge threshold controllable via 6-bit bi-polar DAC

• Lockout time adjustable between 100 nsec and 16.8 µsec

• Test point output providing one of five selectable digital signals

• Controllable Nowlin delay to allow input risetimes between 2 nsec and 192 nsec

• On chip signal ground generator trimmable to match supply

The CFD16C contains sixteen signal channels allowing one chip to support two PSD8Cs.

Each signal channel is comprised of an input Nowlin circuit, leading edge discriminator,

zero cross discriminator, and an output one-shot circuit with lockout capabilities. The

CFD16C provides a timing pulse output from each of the 16 signal channels, as well as a

global logical OR of all channels and an analog multiplicity voltage proportional to the

number of channels that have fired. The IC occupies a die area of approximately 1.9 mm

x 3.5 mm and will be fabricated in the AMS-AG 0.35 micron NWELL process.

73

5.2 Conclusions

The chip level simulations show that the CFD16C will work very well in new scintillator

experiments accompanied with the PSD8C. The design of the IC is complete and layouts

will be finished in time for a late 2018 submission.

5.3 Future Work

While the bulk of the design for CFD16C has been completed and the simulated

performance looks promising, more robust and detailed simulations still need to be ran

before the chip is ready to be sent out for fabrication. Smulations for the following must

be completed:

• Disabling the internal signal ground generator and providing an external signal

ground reference

• Increasing/decreasing the AVDD supply voltage and trimming the internal AGND

to match

• Test each channel with a different leading edge threshold value

• Check that all test point nodes can be routed and from each channel

• Test RST L functionality

• Chip level simulations including parasitic extraction

Layout of the CFD circuits (i.e. leading edge and zero cross discriminators) needs to

be completed, as well as the top level interconnect routing. It is expected the chip

will be sent for fabrication in November 2018. Once the chip has been fabricated a

performance analysis on the physical IC will be done and any discrepancies from the

simulated performance will be identified. More simulations will then be run to find the

cause of any discrepancies.

74

REFERENCES

[A. Spyrou, 2012] A. Spyrou, Z. Kohley, T. B. (2012). First observation of ground state
dineutron decay: 16Be. Physical Review Letters.

[Allen, 2012] Allen, P. E. (2012). CMOS analog circuit design. Oxford University Press,
USA, New York Oxford.

[Baker, 2010] Baker, R. J. (2010). CMOS: Circuit Design, Layout, and Simulation. Wiley,
Hoboken, New Jersey, 3rd edition.

[Binkley, 1994] Binkley, D. M. (1994). Performance of non-delay-line constant-fraction
discriminator timing circuits. IEEE Transactions on Nuclear Science, 41(4):1169–
1175.

[Binkley and Casey, 1988] Binkley, D. M. and Casey, M. E. (1988). Performance of fast
monolithic ecl voltage comparators in constant-fraction discriminators and other
timing circuits. IEEE Transactions on Nuclear Science, 35(1):226–230.

[Binkley et al., 1991] Binkley, D. M., Simpson, M. L., and Rochelle, J. M. (1991). A mono-
lithic, 2 mu;m cmos constant-fraction discriminator for moderate time resolution
systems. IEEE Transactions on Nuclear Science, 38(6):1754–1759.

[B.S. Budden, 2015] B.S. Budden, L.C.Stonehill, A. (2015). Handheld readout electronics
to fully exploit the particle discrimination capabilities of elpasolite scintillators.
Nuclear Instruments and Methods in Physics.

[Bult and Geelen, 1992] Bult, K. and Geelen, G. (1992). An inherently linear and compact
most-only current-division technique. In 1992 IEEE International Solid-State
Circuits Conference Digest of Technical Papers, pages 198–199.

[Engel, 2016] Engel, G. (2016). A multi-channel discriminator ic. http://www.siue.

edu/~gengel/ece584WebStuff/CFDchip.pdf. accessed : 2017-1-10.

[G. Engel, 2007] G. Engel, M. Sadasivam, M. N. (2007). Multi-channel integrated cir-
cuit for use in low and intermediate energy nuclear physics - hinp16c. Nuclear
Instruments and Methods in Physics.

[Hall, 2007] Hall, M. J. (2007). Design considerations in systems employing multiple
charge integration for the detection of ionizing radiation. Master’s thesis, Southern
Illinois University Edwardsville.

[Hastings, 2001] Hastings, A. (2001). The ART of ANALOG LAYOUT. Prentice Hall,
Upper Saddle River,NJ07458.

[Helmuth, 2005] Helmuth, S. (2005). Semiconductor Detector Systems. Oxford University
Press, New York.

http://www.siue.edu/~gengel/ece584WebStuff/CFDchip.pdf
http://www.siue.edu/~gengel/ece584WebStuff/CFDchip.pdf

75

[I. Tilquin, 1995] I. Tilquin, Y. El Masri, M. P. (1995). Detection efficiency of the
neutron modular detector demon and related characteristics. Nuclear Instruments
and Methods in Physics.

[Jackson et al., 1996] Jackson, R. G., Blalock, T. V., Simpson, M. L., Wintenberg, A. L.,
and Young, G. R. (1996). Integrated constant-fraction discriminator shaping
techniques for the phenix lead-scintillator calorimeter. In 1996 IEEE Nuclear
Science Symposium. Conference Record, volume 1, pages 51–55 vol.1.

[Kohley Z., 2015] Kohley Z., Baumann T., C. G. (2015). Three-body correlations in the
ground-state decay of 26O. Physical Review C.

[N. Zaitseva, 2012] N. Zaitseva, B. L. Rupert, I. P. (2012). Plastic scintillators with
efficient neutron/gamma pulse shape discrimination author links open overlay panel.
Nuclear Instruments and Methods in Physics.

[Proctor, 2007] Proctor, J. (2007). Design of a multi-channel integrated circuit for use
in nuclear physics experiments where particle identification is required. Master’s
thesis, Southern Illinois University Edwardsville.

[Rabaey, 2003] Rabaey, J. (2003). Digital integrated circuits : a design perspective.
Pearson Education, Upper Saddle River, N.J.

[Razavi, 2001] Razavi, B. (2001). Design of analog CMOS integrated circuits. McGraw-
Hill, Boston, MA.

[Sadasivam, 2002] Sadasivam, M. (2002). A multi-channel integrated circuit for use with
silicon strip detectors in experiments in low and intermediate physics. Master’s
thesis, Southern Illinois University Edwardsville.

[Simpson et al., 1994] Simpson, M. L., Britton, C. L., Wintenberg, A. L., and Young,
G. R. (1994). An integrated, cmos, constant-fraction timing discriminator for
multichannel detector systems. In Nuclear Science Symposium and Medical Imaging
Conference, 1994., 1994 IEEE Conference Record, volume 1, pages 320–324 vol.1.

[Simpson et al., 1995] Simpson, M. L., Young, G. R., Jackson, R. G., and Xu, M. (1995).
A monolithic, constant-fraction discriminator using distributed r-c delay line shaping.
In 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record,
volume 1, pages 292–296 vol.1.

[Singh et al., 2012] Singh, A. P., Pandey, S. K., and Kumar, M. (2012). Operational
transconductance amplifier for low frequency application.

[T. Baumanna, 2005] T. Baumanna, J. Boike, J. B. (2005). Construction of a modular
large-area neutron detector for the nscl. Nuclear Instruments and Methods in
Physics.

76

[Tsividis, 2011] Tsividis, Y. (2011). Operation and modeling of the MOS transistor.
Oxford University Press, New York.

[Weste, 2006] Weste, N. (2006). CMOS VLSI design : a circuits and systems perspective.
Pearson Education, Delhi.

77

APPENDICES

APPENDIX A

Verilog-A pulse generator

// VerilogA for Lib , pulser , veriloga

‘include "constants.vams"

‘include "disciplines.vams"

‘define CHANNELS 16

module pulser(TRIG , PEAK , RISE);

output[‘CHANNELS -1:0] TRIG , PEAK;

output RISE;

electrical[‘CHANNELS -1:0] TRIG , PEAK;

electrical gnd , RISE;

ground gnd;

/* Pulse peak amplitude lines */

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK0.pwl")) V_peak0(PEAK[0], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK1.pwl")) V_peak1(PEAK[1], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK2.pwl")) V_peak2(PEAK[2], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK3.pwl")) V_peak3(PEAK[3], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK4.pwl")) V_peak4(PEAK[4], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK5.pwl")) V_peak5(PEAK[5], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK6.pwl")) V_peak6(PEAK[6], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK7.pwl")) V_peak7(PEAK[7], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK8.pwl")) V_peak8(PEAK[8], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//PEAK9.pwl")) V_peak9(PEAK[9], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// PEAK10.pwl")) V_peak10(PEAK [10],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// PEAK11.pwl")) V_peak11(PEAK [11],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// PEAK12.pwl")) V_peak12(PEAK [12],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// PEAK13.pwl")) V_peak13(PEAK [13],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// PEAK14.pwl")) V_peak14(PEAK [14],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// PEAK15.pwl")) V_peak15(PEAK [15],

gnd);

/* Pulse trigger lines */

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG0.pwl")) V_trig0(TRIG[0], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG1.pwl")) V_trig1(TRIG[1], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG2.pwl")) V_trig2(TRIG[2], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG3.pwl")) V_trig3(TRIG[3], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG4.pwl")) V_trig4(TRIG[4], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG5.pwl")) V_trig5(TRIG[5], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG6.pwl")) V_trig6(TRIG[6], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG7.pwl")) V_trig7(TRIG[7], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG8.pwl")) V_trig8(TRIG[8], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//TRIG9.pwl")) V_trig9(TRIG[9], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// TRIG10.pwl")) V_trig10(TRIG [10],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// TRIG11.pwl")) V_trig11(TRIG [11],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// TRIG12.pwl")) V_trig12(TRIG [12],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// TRIG13.pwl")) V_trig13(TRIG [13],

gnd);

78

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// TRIG14.pwl")) V_trig14(TRIG [14],

gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// TRIG15.pwl")) V_trig15(TRIG [15],

gnd);

/* Risetime constant line */

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//RISE.pwl")) V_rise(RISE , gnd);

endmodule

79

APPENDICES

APPENDIX B

Verilog-A Test fixture

// VerilogA for Lib , CFD_test , veriloga

‘include "constants.vams"

‘include "disciplines.vams"

‘define DATABITS 8

‘define CHANNELS 16

module Channel_Tester(IN, PEAK , TRIG , AGND , RISE , DATA , AVDD , AVSS , DVDD , DGND , GEN ,

NEG_POL , RST_L , AGND_INT_DISABLE , STB , SIG);

output AVDD , AVSS , DVDD , DGND , RST_L , STB , GEN , AGND_INT_DISABLE;

output[‘DATABITS -1:0] DATA;

input AGND , RISE;

input[‘CHANNELS -1:0] TRIG , PEAK , IN;

output[‘CHANNELS -1:0] SIG;

electrical AVDD , AVSS , DVDD , DGND , RST_L , STB , GEN , AGND_INT_DISABLE , AGND , RISE;

electrical[‘DATABITS -1:0] DATA;

electrical[‘CHANNELS -1:0] TRIG , PEAK;

electrical[‘CHANNELS -1:0] SIG , IN;

electrical gnd;

ground gnd;

parameter real time_tol = 100p from[1p:100n]; //time tolerance for transitions and

timers

parameter real load_cap = 10p; //load capacitance on the DOUT lines

real vpeak[‘CHANNELS -1:0]; //peak amplitude of exp pulse

real exp_pulse[‘CHANNELS -1:0]; // variable to hold current value of pulse

real t0[‘CHANNELS -1:0]; //time the last pulse started

real t; // current time (used for calculating value of pulse)

genvar j;

real time_fall , time_rise;

real vth;

real tau_r;

integer time_flag;

integer fid;

real start[‘CHANNELS -1:0];

/* Supply voltage lines */

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//AVDD.pwl")) V_avdd(AVDD , gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//AVSS.pwl")) V_avss(AVSS , gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DVDD.pwl")) V_dvdd(DVDD , gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DGND.pwl")) V_dgnd(DGND , gnd);

/* Data lines */

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA0.pwl")) V_data0(DATA[0], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA1.pwl")) V_data1(DATA[1], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA2.pwl")) V_data2(DATA[2], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA3.pwl")) V_data3(DATA[3], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA4.pwl")) V_data4(DATA[4], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA5.pwl")) V_data5(DATA[5], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA6.pwl")) V_data6(DATA[6], gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//DATA7.pwl")) V_data7(DATA[7], gnd);

/* Control Lines */

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//STB.pwl")) V_stb(STB , gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//GEN.pwl")) V_gen(GEN , gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// AGND_INT_DISABLE.pwl"))

V_agnd_int_disable(AGND_INT_DISABLE , gnd);

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd// NEG_POL.pwl")) V_neg_pol(NEG_POL ,

gnd);

80

vsource #(. type("pwl"), .file("~/cds/CFDtest/vcd//RST_L.pwl")) V_rst_l(RST_L , gnd);

analog begin

@(initial_step) begin

time_flag = 0;

fid = $fopen("~/cds/CFD/walk_results.csv");

tau_r = 3e-9;

end

vth = (V(DVDD) + V(AVSS))/2.0;

t = $abstime;

for(j = 0; j < ‘CHANNELS; j = j + 1) begin

@(cross(V(TRIG[j]) - vth , 1, time_tol)) begin

vpeak[j] = V(PEAK[j]);

tau_r = V(RISE);

t0[j] = $abstime;

time_flag = 1;

time_fall = $abstime + 20* tau_r;

start[j] = t0[j]; // record pulse time when trigger line goes high

if(j == 0) $fwrite(fid , "\n\n");

end

exp_pulse[j] = exp(-(t-t0[j]) /(10.0* tau_r)) - exp(-(t-t0[j])/tau_r);

V(SIG[j], AGND) <+ vpeak[j]* exp_pulse[j]*1.435;

@(cross(V(IN[j])-vth , 1, time_tol)) begin

$fstrobe(fid , "channel\t%d\tamp\t%g\tstart\t%g\tout\t%g", j, vpeak[j], start

[j], $abstime); // record peak amplitude and output time when channel

output goes high.

end

end

for(j = 0; j < ‘CHANNELS; j = j + 1) begin

I(IN[j]) <+ load_cap*ddt(V(IN[j]));

end

/* After 20 time constants , clear the time flag */

@(timer(time_fall)) begin

time_flag = 0;

end

/* While time flag is set , steps will be smaller to accurately model pulse */

if(time_flag) begin

$bound_step(tau_r /25.0);

end

@(final_step) begin

$fclose(fid);

end

end

endmodule

81

APPENDICES

APPENDIX C

System Verilog global defines

/* Pulse characteristics */

localparam PW = 100ns;

localparam TRF = 1ns;

localparam TPD = 5ns;

localparam STBPERIOD = 1us; // time between stb pulses when creating pulse train

/* Bit widths */

localparam CVBITS = 2;

localparam LOCKOUTBITS = 5;

localparam ADDRBITS = 4;

localparam DATABITS = 8;

localparam MODEBITS = 4;

localparam SBITS = 4;

localparam LEBITS = 6;

localparam TRIMBITS = 3;

localparam TPBITS = 3;

localparam CHANNELS = 16;

/* Mode values */

localparam PCAPMODE = 3’h0; //used for programmable capacitor

localparam TPMODE = 3’h0; //used for test point

localparam ONESHOTMODE = 3’h1; //used for oneshot

localparam TRIMMODE = 3’h1; //used for AGND trim

localparam LOCKOUTMODE = 3’h5; //used for lockout DAC

localparam DACMODE = 3’h6; //used for LE DAC

localparam COMMON = 4’h0; // address for common area devices

/* TP MUX selectors */

localparam TPAVSS = 3’h0;

localparam TPLOCK = 3’h1;

localparam TPLE = 3’h2;

localparam TPOSIN = 3’h3;

localparam TPOSOUT = 3’h5;

localparam TPZC = 3’h6;

/* Simulation parameters */

localparam EPSILON = 1e-15;

localparam SIMDELAY = 225us;

/* Event schedule */

localparam POWER = 5ns;

localparam CONTROL_SIGS = 1us;

localparam CONFIG_ALL = 5us;

localparam GEN_ON = 6ms;

localparam HIT_ALL = 9ms;

localparam TEST_LOCKOUT = 9001us;

localparam HIT_ALL_100us = 11ms;

localparam CONFIG_LONG = 12ms;

localparam GEN_OFF = 12ms;

localparam GEN_ON2 = 12.5ms;

localparam HIT_LONG = 13ms;

localparam GEN_OFF2 = 14ms;

localparam NEG_TEST = 15ms;

82

APPENDICES

APPENDIX D

System Verilog tasks

//

###

//

// Initialization task

//

//

###

task init;

integer i;

AVDD = 0; // Analog supply

AVSS = 0; // Analog reference

DVDD = 0; // Digital supply

DGND = 0; // Digital reference

GEN = 0; // Global enable

NEG_POL = 0; // Negative polarity enable

AGND_INT_DISABLE = 0; // Internal AGND generator enable

RST_L = 0; //Low active RST

STB = 0; //Data/addr/mode latch signal

RISE = 0; //Rise time constant line

/* Set data bus low */

for(i = 0; i < DATABITS; i = i + 1) begin

DATA[i] = 0;

end

/* Set pulse trigger and peak lines low */

for(i = 0; i < CHANNELS; i = i + 1) begin

TRIG[i] = 0;

PEAK[i] = 0;

end

endtask

//

###

//

// Global Enable task

//

//

###

task gen(input state);

if(state > 1 || state < 0)

state = 0;

GEN = state;

endtask

//

###

//

// Power on task

//

//

###

83

task power_on;

#(TRF)

AVDD = 3.3;

DVDD = 3.3;

endtask

//

###

//b

// Set ADDR and MODE on the shared 8-bit bus

//

//

###

task set_addr_mode(input[ADDRBITS -1:0]addr , input[MODEBITS -1:0] mode);

#(TRF)

DATA [7:4] = addr;

DATA [3:0] = mode;

endtask

//

###

//

// Set the One Shot lockout enable

//

//

###

task set_lockout_en(input data);

if(data > 1 || data < 0)

data = 0;

#(TRF)

DATA [5] = data;

endtask

//

###

//

// Set the lockout mode (0 long; 1 short)

//

//

###

task set_lockout_mode(input data);

if(data > 1 || data < 0)

data = 0;

#(TRF)

DATA [5] = data;

endtask

//

###

//

// Set the One Shot lockout pulse width control voltage DAC.

//

//

###

task set_lockout_cv(input[LOCKOUTBITS -1:0] data);

#(TRF)

DATA [4:0] = data;

endtask

84

//

###

//

// Set the One Shot pulse width control bus

//

//

###

task set_os_width(input[CVBITS -1:0] data);

#(TRF)

DATA [1:0] = data;

endtask

//

###

//

// Set the Leading Edge descriminator threshold DAC

//

//

###

task set_le_dac(input[LEBITS -1:0] data);

#(TRF)

DATA[LEBITS -1:0] = data;

endtask

//

###

//

// Set the AGND trim bits

//

//

###

task set_trim(input[TRIMBITS -1:0] data);

#(TRF)

DATA [4:2] = data;

endtask

//

###

//

// Set the AGND_INT_DISABLE line (internal AGND generator disable)

//

//

###

task set_agnd_int_disable(input val);

if(val > 1 || val < 0)

val = 0;

#(TRF)

AGND_INT_DISABLE = val;

endtask

//

###

//

// Set the channel enable bit for a given channel

//

//

###

85

task set_channel_enable(input val);

if(val > 1 || val < 0)

val = 0;

#(TRF)

DATA [6] = val;

endtask

//

###

//

// Set the test point select mux

//

//

###

task set_tp_mux(input[TPBITS -1:0] data);

#(TRF)

DATA [6:4] = data;

endtask

//

###

//

// Set the programmable capacitor bus

//

//

###

task set_prog_cap(input[SBITS -1:0] data);

#(TRF)

DATA[SBITS -1:0] = data;

endtask

//

###

//

// Set the Nowlin Circuit mode (1 = fast , 0 = slow)

//

//

###

task set_nowlin_mode(input data);

if(data > 1 || data < 0)

data = 0;

#(TRF)

DATA [7] = data;

endtask

//

###

//

// Set the negative polarity bit

//

//

###

task set_neg_pol(input val);

if(val > 1 || val < 0)

val = 0;

#(TRF)

NEG_POL = val;

endtask

86

//

###

//

// Set RST_L line

//

//

###

task set_rst_l(input val);

if(val > 1 || val < 0)

val = 0;

#(TRF)

RST_L = val;

endtask

//

###

//

// Produces n clock cycles on the STB line

//

//

###

task pulse_stb(integer npulses);

integer i;

for(i = 0; i < npulses; i = i + 1) begin

#(STBPERIOD /2.0)

STB = 1;

#(STBPERIOD /2.0)

STB = 0;

end

endtask

//

###

//

// Set STB line either high or low

//

//

###

task set_stb(input val);

if(val > 1 || val < 0)

val = 0;

#(TRF)

STB = val;

endtask

//

###

//

// Sets the exponential pulse peak line , and creates a trigger pulse to begin the output

//

//

###

task trigger_pulse(real level[CHANNELS -1:0], real delay[CHANNELS -1:0] , real rise);

integer i;

begin

fork

begin

RISE = EPSILON;

87

#(TRF)

RISE = rise;

#(PW*2)

RISE = rise + EPSILON;

#(TRF)

RISE = 0;

end

begin

/* Create exp pulse peak voltage pulse */

for(i = 0; i < CHANNELS; i = i + 1) begin

PEAK[i] = EPSILON;

end

#(TRF)

for(i = 0; i < CHANNELS; i = i + 1) begin

PEAK[i] = level[i];

end

#(PW)

for(i = 0; i < CHANNELS; i = i + 1) begin

PEAK[i] = level[i] + EPSILON;

end

#(TRF)

for(i = 0; i < CHANNELS; i = i + 1) begin

PEAK[i] = 0;

end

end

/* Trigger an exp pulse on each channel if a peak voltage is set */

begin

if(level [0] != 0) begin

#(delay [0]) TRIG [0] = 1;

#(PW) TRIG [0] = 0;

end

end

begin

if(level [1] != 0) begin

#(delay [1]) TRIG [1] = 1;

#(PW) TRIG [1] = 0;

end

end

begin

if(level [2] != 0) begin

#(delay [2]) TRIG [2] = 1;

#(PW) TRIG [2] = 0;

end

end

begin

if(level [3] != 0) begin

#(delay [3]) TRIG [3] = 1;

#(PW) TRIG [3] = 0;

end

end

begin

if(level [4] != 0) begin

#(delay [4]) TRIG [4] = 1;

#(PW) TRIG [4] = 0;

end

end

begin

if(level [5] != 0) begin

#(delay [5]) TRIG [5] = 1;

#(PW) TRIG [5] = 0;

end

end

begin

88

if(level [6] != 0) begin

#(delay [6]) TRIG [6] = 1;

#(PW) TRIG [6] = 0;

end

end

begin

if(level [7] != 0) begin

#(delay [7]) TRIG [7] = 1;

#(PW) TRIG [7] = 0;

end

end

begin

if(level [8] != 0) begin

#(delay [8]) TRIG [8] = 1;

#(PW) TRIG [8] = 0;

end

end

begin

if(level [9] != 0) begin

#(delay [9]) TRIG [9] = 1;

#(PW) TRIG [9] = 0;

end

end

begin

if(level [10] != 0) begin

#(delay [10]) TRIG [10] = 1;

#(PW) TRIG [10] = 0;

end

end

begin

if(level [11] != 0) begin

#(delay [11]) TRIG [11] = 1;

#(PW) TRIG [11] = 0;

end

end

begin

if(level [12] != 0) begin

#(delay [12]) TRIG [12] = 1;

#(PW) TRIG [12] = 0;

end

end

begin

if(level [13] != 0) begin

#(delay [13]) TRIG [13] = 1;

#(PW) TRIG [13] = 0;

end

end

begin

if(level [14] != 0) begin

#(delay [14]) TRIG [14] = 1;

#(PW) TRIG [14] = 0;

end

end

begin

if(level [15] != 0) begin

#(delay [15]) TRIG [15] = 1;

#(PW) TRIG [15] = 0;

end

end

join

end

endtask

89

APPENDICES

APPENDIX E

System Verilog test fixture

‘include "localparams.vh"

‘define NEGATIVE

module verilog_driver(

output reg [DATABITS -1:0] DATA ,

output reg [CHANNELS -1:0] TRIG ,

output reg NEG_POL ,

output reg AGND_INT_DISABLE ,

output reg RST_L ,

output reg STB ,

output reg GEN ,

output real AVDD ,

output real AVSS ,

output real DVDD ,

output real DGND ,

output real PEAK[CHANNELS -1:0] ,

output real RISE

);

‘include "verilog_driver_tasks.sv"

integer i;

reg gmode;

real level[CHANNELS -1:0];

real delay[CHANNELS -1:0];

initial begin

fork

gmode = 1’b1;

/* Initialize the chip */

init;

/* Apply power (AVDD , DVDD) */

#(POWER) begin fork

power_on;

join end

/* Set pin mapped control lines */

#(CONTROL_SIGS) begin fork

set_rst_l (1);

set_neg_pol (0);

set_agnd_int_disable (0);

join end

/* Cofigure all channels identically */

#(CONFIG_ALL) begin fork

set_addr_mode (4’h0, {gmode , PCAPMODE }); // system verilog for some reason

does not set DATA correctly without this

#10ns

set_addr_mode (4’h0, {gmode , PCAPMODE }); // change addr to 0 and mode to

select programmable capacitor register

#150ns

set_stb (1); // register addr/mode

#300ns

set_prog_cap (4’h1); //set programmable capacitor for 2ns rise

#310ns

set_tp_mux(TPLOCK); //set testpoint to see lockout pulse

#320ns

set_nowlin_mode (1); //set to short mode

#450ns

90

set_stb (0); // register data

#600ns

set_addr_mode (4’h0, {gmode , ONESHOTMODE }); //set mode to select oneshot

register

#750ns

set_stb (1);

#900ns

set_trim(3’h4); //set AGND trim to nominal

#910ns

set_lockout_mode (1); // short mode

#920ns

set_os_width (2’h2); //set oneshot width to 500 ns

#1.05us

set_stb (0);

#1.2us

set_addr_mode (4’h0, {gmode , LOCKOUTMODE }); //set mode to select lockout dac

register

#1.35us

set_stb (1);

#1.5us

set_lockout_cv (5’h01); //set lockout to 3.4 uS

#1.51us

set_lockout_en (0); // enable lockout

#1.65us

set_stb (0);

#1.8us

set_addr_mode (4’h0, {gmode , DACMODE }); //set mode to select threshold DAC

#1.95us

set_stb (1);

#2.1us

set_le_dac (6’h2f); //set threshold value

#2.11us

set_channel_enable (1); // enable channel

#2.25us

set_stb (0);

#2.5us

set_addr_mode (4’h0, 4’h0); //set address for test point

join end

/* Set global enable */

#(GEN_ON) begin

gen (1);

end

#(HIT_ALL)

begin

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = (i == 0) ? 0.015: level[i -1]*1.36;

end

trigger_pulse(level , delay , 2e-9);

end

/* Fire shortly after HIT_ALL to test lockout */

#(TEST_LOCKOUT)

begin

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = 0.15;

end

trigger_pulse(level , delay , 2e-9);

end

/* Hit all of the channels with the same pulses , and hit them again

100us later to test how quick DC offset recovery is */

91

#(HIT_ALL_100us) begin fork

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = (i == 0) ? 0.015: level[i -1]*1.36;

end

trigger_pulse(level , delay , 2e-9);

#100us

trigger_pulse(level , delay , 2e-9);

join end

#(GEN_OFF) begin

gen (0);

end

/* Configure for long rise time constants */

#(CONFIG_LONG) begin fork

set_addr_mode (4’h0, {gmode , PCAPMODE });

#10ns

set_addr_mode (4’h0, {gmode , PCAPMODE });

#150ns

set_stb (1);

#300ns

set_prog_cap (4’hf); //set PCAP at maximum value (192 ns)

#310ns

set_tp_mux(TPLOCK);

#320ns

set_nowlin_mode (0); //set to long mode

#450ns

set_stb (0);

#600ns

set_addr_mode (4’h0, {gmode , ONESHOTMODE });

#750ns

set_stb (1);

#900ns

set_trim(3’h4);

#910ns

set_lockout_mode (0); //long mode

#920ns

set_os_width (2’h0);

#1.05us

set_stb (0);set_addr_mode (4’h0, {gmode , LOCKOUTMODE }); //set mode to select

lockout dac register

#1.2us

set_stb (1);

#1.35us

set_lockout_cv (5’h01); //set lockout to 16.8 uS

#1.36us

set_lockout_en (0); // enable lockout

#1.5us

set_stb (0);

#1.65us

set_addr_mode (4’h0, 4’h0); //set address for test point

join end

#(GEN_ON2) begin

gen (1);

end

/* Hit channels with long rise time pulses */

#(HIT_LONG) begin

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = (i == 0) ? 0.015: level[i -1]*1.36;

end

trigger_pulse(level , delay , 192e-9);

92

end

‘ifdef NEGATIVE

#(GEN_OFF2) begin

gen (0);

end

/* Configurate for negative pulses */

#(NEG_TEST + CONFIG_ALL) begin fork

set_addr_mode (4’h0, {gmode , PCAPMODE }); // system verilog for some reason

does not set DATA correctly without this

#10ns

set_addr_mode (4’h0, {gmode , PCAPMODE }); // change addr to 0 and mode to

select programmable capacitor register

#150ns

set_stb (1); // register addr/mode

#300ns

set_prog_cap (4’h1); //set programmable capacitor for 2ns rise

#310ns

set_tp_mux(TPLOCK); //set testpoint to see lockout pulse

#320ns

set_nowlin_mode (1); //set to fast mode

#450ns

set_stb (0); // register data

#600ns

set_addr_mode (4’h0, {gmode , DACMODE }); //set mode to select threshold DAC

#750ns

set_le_dac (6’h04); //set threshold value

#760ns

set_channel_enable (1); // enable channel

#900ns

set_stb (0);

#1us

set_addr_mode (4’h0, 4’h0); //set address for test point

join end

/* Enable control lines */

#(NEG_TEST + 100us) begin fork

gen (1);

set_neg_pol (1);

join end

/* Hit with negative pulses 16ns rise */

#(NEG_TEST + 500us) begin

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = (i == 0) ? -0.015: level[i -1]*1.36;

end

trigger_pulse(level , delay , 2e-9);

end

/* Test lockout with negative pulses */

#(NEG_TEST + 501us) begin

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = -0.15;

end

trigger_pulse(level , delay , 2e-9);

end

/* Hit all of the channels with the same negative pulses , and hit them again

100us later to test how quick DC offset recovery is */

#(NEG_TEST + 2.5ms) begin fork

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = (i == 0) ? -0.015: level[i -1]*1.36;

93

end

trigger_pulse(level , delay , 2e-9);

#100us

trigger_pulse(level , delay , 2e-9);

join end

#(NEG_TEST + 4.5ms) begin fork

gen (0);

join end

/* Configure for long negative pulses */

#(NEG_TEST + 6.5ms) begin fork

set_addr_mode (4’h0, {gmode , PCAPMODE });

#10ns

set_addr_mode (4’h0, {gmode , PCAPMODE });

#150ns

set_stb (1);

#300ns

set_prog_cap (4’hf); //set PCAP at maximum value (192 ns)

#310ns

set_tp_mux(TPLOCK);

#320ns

set_nowlin_mode (0); //set to slow mode

#450ns

set_stb (0);

#500ns

set_addr_mode (4’h0, 4’h0); //set address for TP

join end

#(NEG_TEST + 5ms) begin

gen (1);

end

/* Hit channels with long negative pulses */

#(NEG_TEST + 5.5ms) begin

/* Trigger the exp pules */

for(i = 0; i < CHANNELS; i = i + 1) begin

delay[i] = 100ns;

level[i] = (i == 0) ? -0.015: level[i -1]*1.36;

end

trigger_pulse(level , delay , 192e-9);

end

‘endif

join

end

endmodule

94

APPENDICES

APPENDIX F

System Verilog instantiation

‘timescale 1ns/1ps

‘define NEGATIVE

‘ifdef NEGATIVE

‘define LEN_OF_SIM 22ms

‘else

‘define LEN_OF_SIM 13.5ms

‘endif

‘define ADDRBITS 4

‘define DATABITS 8

‘define MODEBITS 4

‘define CHANNELS 16

module verilog_driver_tb;

// Need to create a VCD (Value Change Dump) file

initial begin

$dumpfile("/home/CFD/cds/CFDtest/vcd/verilog_driver.vcd") ;

$dumpvars(1, AVDD , AVSS , DVDD , DGND , NEG_POL , AGND_INT_DISABLE ,

RST_L , STB , DATA0 , DATA1 , DATA2 , DATA3 , DATA4 ,

DATA5 , DATA6 , DATA7 , PEAK0 , PEAK1 , PEAK2 , PEAK3 ,

PEAK4 , PEAK5 , PEAK6 , PEAK7 , PEAK8 , PEAK9 , PEAK10 , PEAK11 ,

PEAK12 , PEAK13 , PEAK14 , PEAK15 , TRIG0 , TRIG1 , TRIG2 , TRIG3 ,

TRIG4 , TRIG5 , TRIG6 , TRIG7 , TRIG8 , TRIG9 , TRIG10 , TRIG11 ,

TRIG12 , TRIG13 , TRIG14 , TRIG15 , GEN , RISE) ;

end

real AVDD , AVSS , DVDD , DGND , RISE;

wire STB;

wire[‘DATABITS -1:0] DATA;

real PEAK[‘CHANNELS -1:0];

wire[‘CHANNELS -1:0] TRIG;

wire DATA0 , DATA1 , DATA2 , DATA3 , DATA4 , DATA5 , DATA6 , DATA7;

real PEAK0 , PEAK1 , PEAK2 , PEAK3 , PEAK4 , PEAK5 , PEAK6 , PEAK7;

real PEAK8 , PEAK9 , PEAK10 , PEAK11 , PEAK12 , PEAK13 , PEAK14 , PEAK15;

wire TRIG0 , TRIG1 , TRIG2 , TRIG3 , TRIG4 , TRIG5 , TRIG6 , TRIG7;

wire TRIG8 , TRIG9 , TRIG10 , TRIG11 , TRIG12 , TRIG13 , TRIG14 , TRIG15;

wire GEN , AGND_INT_DISABLE , RST_L , NEG_POL;

verilog_driver dut(.AVDD(AVDD),

.AVSS(AVSS),

.DVDD(DVDD),

.DGND(DGND),

.RISE(RISE),

.DATA(DATA),

.PEAK(PEAK),

.TRIG(TRIG),

.STB(STB),

.RST_L(RST_L),

.NEG_POL(NEG_POL),

.AGND_INT_DISABLE(AGND_INT_DISABLE),

.GEN(GEN));

assign DATA0 = DATA [0];

assign DATA1 = DATA [1];

assign DATA2 = DATA [2];

assign DATA3 = DATA [3];

assign DATA4 = DATA [4];

assign DATA5 = DATA [5];

95

assign DATA6 = DATA [6];

assign DATA7 = DATA [7];

assign TRIG0 = TRIG [0];

assign TRIG1 = TRIG [1];

assign TRIG2 = TRIG [2];

assign TRIG3 = TRIG [3];

assign TRIG4 = TRIG [4];

assign TRIG5 = TRIG [5];

assign TRIG6 = TRIG [6];

assign TRIG7 = TRIG [7];

assign TRIG8 = TRIG [8];

assign TRIG9 = TRIG [9];

assign TRIG10 = TRIG [10];

assign TRIG11 = TRIG [11];

assign TRIG12 = TRIG [12];

assign TRIG13 = TRIG [13];

assign TRIG14 = TRIG [14];

assign TRIG15 = TRIG [15];

assign PEAK0 = PEAK [0];

assign PEAK1 = PEAK [1];

assign PEAK2 = PEAK [2];

assign PEAK3 = PEAK [3];

assign PEAK4 = PEAK [4];

assign PEAK5 = PEAK [5];

assign PEAK6 = PEAK [6];

assign PEAK7 = PEAK [7];

assign PEAK8 = PEAK [8];

assign PEAK9 = PEAK [9];

assign PEAK10 = PEAK [10];

assign PEAK11 = PEAK [11];

assign PEAK12 = PEAK [12];

assign PEAK13 = PEAK [13];

assign PEAK14 = PEAK [14];

assign PEAK15 = PEAK [15];

// Run simulation for a bit and then finish

initial begin

(‘LEN_OF_SIM) $finish ;

end

endmodule

96

APPENDICES

APPENDIX G

VCD to PWL python script

#!/usr/bin/python

#

GLE: 6 June 2017

#

Fixed several bugs !!!

It now finds floating point numbers correctly

Also fixed the bug tha Po discovered

#

Python script to convert vcd file to a series of pwl files

#

#

This script will read and parse a VCD (Value Change Dump) file

produced by a Verilog simulation

#

A SPICE piece -wise -linear description is created for each signal in the VCD file

#

Modfied on September 14, 2014 to support real variables

Need system calls

import sys ;

Need command line arguments from operating system

from sys import argv ;

Need the regular expression package

import re ;

Set some electrical parameters

HI = 3.3 ; # Electrical level for a logical 1

LO = 0.0 ; # Electrical value for a logical 0

TRF = 1000 ; # Rise/fall time (in ps) i.e. 1 ns

REAL_SCALE = 1.0; # Scale factor for the real valued signals

Creates symbol_table

symbol_table = {} ;

#

Create a global variable token_table

Token is the key with the pattern as the value

#

token_table = {"DATE" : "^\$date" ,

"VER" : "^\ $version" ,

"TIME" : "^\ $timescale",

"SCOPE" : "^\ $scope",

"DUMP" : "^\ $dumpvars" ,

"VAR" : "^\$var",

"END" : "^\$end",

"UPDATE" : "^\#[\d]+",

"VCD" : "^[01]",

"VCDR" : "^r" } ;

Create a function that parses a line and returns the appropriate token

def parser(line):

global token_table ; # token_table is a global variable

keys = token_table.keys() ;

token = "NULL" ; # The NULL token is our default

for key in keys :

pattern = token_table[key] ; # Pattern we are attempting to match

match = re.match(pattern , line) ;

if (match) :

97

token = key ; # If there is a match set token equal to the

key

return token ; # Return the token!

User is expected to provide name of vcd file to read

Expecting exactly two command line arguments

if (len(sys.argv) == 2) :

cmd , vcd_file_name = argv ;

print "" ;

print "Reading file: %s" % vcd_file_name ;

print "" ;

else :

print "" ;

print "Usage: vcd2pwl <filename.vcd >" ;

print ""

sys.exit ;

Open up the file for reading

try:

vcd_fid = open(vcd_file_name , "r") ;

except IOError:

print "Could not open file for reading!" ;

Read one line at a time from the vcd file

Read in first line from file

line = vcd_fid.readline () ;

Keep reading lines from the file until EOF reached

while line :

#

Send line off to be parsed ... comes back with a token

#

token = parser(line) ;

#

If we have a timescale directive then read the next line and pick off the multiplier

#

if (token == "TIME") :

line = vcd_fid.readline () ; # Read in the next line

fields = line.split() ; # Split the line up into fields

value = float(fields [0]) ; # value (first field)

unit = fields [1] ; # unit ... ps , ns, us etc (second field)

if (unit == "ns") : # Determine what our time base multiplier is

multiplier = 1e-9 * value ;

elif (unit == "ps") :

multiplier = 1e-12 * value ;

elif (unit == "us") :

multiplier = 1e-6 * value ;

else :

multiplier = 1.0 * value ;

print "Mutliplier is %g.\n" % multiplier ;

#

If we have a var directive then pick off signal name and symbol to be used to

represent the signal

#

elif (token == "VAR") :

fields = line.split() ; # Split line up into fields

symbol = fields [3] ; # Symbol used to represent signal (4th field)

signal = fields [4] ; # Signal name (5th field)

symbol_table[symbol] = signal ; # Build our dictionary of symbols and

signal names

#

If we have a dump directive then open up a bunch of files for writing

and then get the initial conditions

#

elif (token == "DUMP") :

time = 0 ; # Set time to 0.0

keys = symbol_table.keys() ; # The keys are the symbols

98

fid = {} ; # Create a dictionary

for key in keys : # Build the dictionary

signal_name = symbol_table[key] ;

file_name = signal_name + ".pwl" ;

fid[key] = open(file_name , "w") ; # Opening a .pwl file for each signal

#

Keep reading lines for the DUMP state until we get the END token

For real valued signals the line will begin with a r

#

line = vcd_fid.readline () ; # Read next line from the file

while (parser(line) != "END") :

value = line [0] ; # First character is the value of the signal

if (value == ’0’) : # Convert to an electrical level

voltage = LO ;

symbol = line [1] ; # Second character is the symbol used for the signal

elif (value == ’1’) :

voltage = HI ;

symbol = line [1] ; # Second character is the symbol used for the signal

elif (value == ’r’) :

fields = line.split() ; # Split the line up into sapce delimited fields

m = re.search (’[\d.]+’, fields [0]); # Find the float

m = re.search(’[-+]?(\d+(\.\d*) ?|\.\d+)([eE][-+]?\d+)?’, fields [0]); # Find

the float

voltage = float(m.group (0)) ; # Convert to float

voltage *= REAL_SCALE ;

symbol = fields [1] ;

else :

pass ;

line_out = "%g %g\n" % (time , voltage) ;

fid[symbol].write(line_out) ; # Write out inital values at time t=0

line = vcd_fid.readline () ;

#

Need to compute our new time ... UPDATE state

#

elif (token == "UPDATE") :

time = int(line [1:len(line)]) ; # Strip off first character which is a

pound sign

#

Here is what we do when a value changes and is dumped (VCD)

#

elif (token == "VCD") :

value = line [0] ; # First character is the NEW value either a 0 or a 1

symbol = line [1] ; # Next character is the symbol

if (value == ’0’) : # Convert to an electrical level

voltage = HI; # Looks wrong but not

else : # Need to write out old value first

voltage = LO ;

line_out = "%dp %g\n" % (time , voltage) ; # time came from the UPDATE state

fid[symbol].write(line_out) ;

time += TRF ; # Increment time by a rise/fall time

if (value == ’0’) : # Compute new electrical levels

voltage = LO;

else :

voltage = HI ;

line_out = "%dp %g\n" % (time + TRF , voltage) ; # Write out "new" (time , voltage)

pair

fid[symbol].write(line_out) ;

elif (token == "VCDR") :

fields = line.split() ; # Split the line up into sapce delimited fields

m = re.search (’[\d.-]+’, fields [0]); # Find the float

m = re.search(’[-+]?(\d+(\.\d*) ?|\.\d+)([eE][-+]?\d+)?’, fields [0]); # Find the

float

voltage = float(m.group (0)) ; # Convert to float

99

voltage *= REAL_SCALE ;

symbol = fields [1] ;

line_out = "%dp %g\n" % (time , voltage) ; # time came from the UPDATE state

fid[symbol].write(line_out) ;

#

Go read the next line from the file and go back to start of while loop

#

line = vcd_fid.readline () ;

#

Close up all of the files

#

vcd_fid.close () ;

keys = symbol_table.keys() ; # The keys are the symbols

for key in keys :

name = symbol_table[key] ;

name += ".pwl" ;

print "Successfully created: %s" % name ;

fid[key]. close() ;

print ""

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Research Background
	PSD8C IC
	Need for an Integrated Circuit
	Sample Applications
	Object and Scope of Work

	SYSTEM ARCHITECTURE
	System Specifications
	Features
	System-Level Description
	Common channel
	Signal channel

	Chip Pinout

	ELECTRICAL LEVEL DESIGN
	Fabrication Process
	Common Channel
	Configuration registers
	Power on reset circuit
	Signal ground generator
	Bandgap voltage reference
	PTAT current reference
	Zero-tempco current reference
	Lockout DAC
	Multiplicity output buffer

	Signal Channel
	Programmable Nowlin circuit
	Dynamic offset cancellation loop
	Zero-cross discriminator
	Leading-edge discriminator
	Output one-shot with lockout features
	Final output generation

	SIMULATION RESULTS
	Verification of Circuits in Common Channel
	Walk Characteristics of CFD Circuit
	Jitter Performance
	Verification of One-Shot
	Performance Characterization of DAC
	Chip-Level Verification
	Testing Procedure
	Power dissipation
	Chip area usage

	SUMMARY, CONCLUSIONS, AND FUTURE WORK
	Summary
	Conclusions
	Future Work

	REFERENCES
	APPENDICES
	Verilog-A pulse generator
	Verilog-A Test fixture
	System Verilog global defines
	System Verilog tasks
	System Verilog test fixture
	System Verilog instantiation
	VCD to PWL python script

