

MRI (# 1625499) : Development of Auto Reset Circuit for Signal Channel for HINP Chip

Advisor : Dr. George L Engel

Presented by Lakshmi Teja Vipparla Department of Electrical Engineering

Table of Contents

- Introduction
- Block Diagrams
- Circuit Diagrams
 - i. Common Channel
 - ii. Signal Channel
- Test Bench
- Simulation Results
- Layout
- Conclusion

Introduction

- Each strip is a p-n reverse biased junction
- Segmented in square strips, each strip has 32 silicon detectors (16 horizontal and 16 vertical)
- To measure the energy of the charged particle being hit

Fig.1 HiRA (High resolution Array)

Why do we need auto reset ?

- Data sparsification
- When we are looking for particular events to read out

When do we need auto reset?

- Multiplicity output helps physicists whether to read the data out or not
- To reset all analog circuits automatically when take_event signal is not asserted

Why do we need variable delay widths?

• Widely variable delay pulse to allot time for physicists to decide whether to read out the data or not

Working:

- The auto reset generation block produces a time-out pulse of programmable width/delay (supports 16 different programmable delays).
- The input reference current of $12 \ \mu A$ is divided down to produce different pulse width when the qualified CFD narrow pulse fires.

Block Diagram

Fig.2 Block diagram of auto reset circuit

Circuit Diagrams

Zero Temperature coefficient Current Library

Fig. 3 Circuit Diagram for ZTC

Current divider in Common Channel

Fig. 4 Circuit diagram for auto reset current divider in Common Channel

SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE

IC Design Research Laboratory

Fig. 5 Circuit diagram of 1-bit Current divider

Auto Reset Circuit in Signal Channel

Fig.6 Circuit Diagram for auto reset Circuit in Signal Channel

SOUTHERN ILLINOIS UNIVERSITY

IC Design Research Laboratory

Test Bench

Fig.8 Test Bench for Auto reset Circuit

Simulation Results

Digital bit v/s Timeout

Digital Bit	Time Out	Digital Bit	Time Out
0000	1.3 µs	1000	207 µs
0001	1.9 µs	1001	394 µs
0010	3.8 µs	1010	748 µs
0011	7.9 µs	1011	1.42 ms
0100	15.1 µs	1100	2.7 ms
0101	30 µs	1101	5 ms
0110	57.4 µs	1110	9.2 ms
0111	109 µs	1111	16.1 ms

Linearity Plot

Fig. 9 Linearity plot of the time-out pulse

Layout

In Common channel:

Fig. 10 Layout of ZTC

Fig. 11 Layout of Current divider Circuit

In Signal channel:

Fig. 12 Layout of Auto reset Circuit

Conclusion

- Designed a Zero temperature coefficient current of 12 µA
- Designed Current divider circuit to divide 12 µA, depends on digital bit
- Verilog-A module: To produce 16 different digital bits, and Qualified CFD pulse
- Auto reset time-out pulse has been generated with widely variable widths.
- Octave script: Linearity plot
- Layout dimensions:

Signal channel : 144 μm* 100.5 μm Common channel: 301.55 μm* 86.25 μm

QUERIES ?

THANK YOU