

MRI (# 1625499) : Design of Configuration and Readout Electronics for a Multi-Channel Integrated Circuit used in the Detection and Monitoring of Ionization Radiation

Advisor : Dr. George L Engel

By Sai Geetha Allipuram Department of Electrical and Computer Engineering

- Introduction
- System Level Design
- Digital Design using EDI Tools
- Standard Cell Design Flow
- Common Channel
- Signal Channel
- Summary
- Future Work

- Research Background:
 - Alliance of IC Design Research Laboratory at SIUE with the Nuclear Reactions Group at Washington University St. Louis

- Development of a class of multi-channel custom integrated circuits (ICs)
- Need for these custom IC's ?
- The Collaboration Achievements:
 - HINP Heavy Ion Nuclear Physics with 16 Channels
 - **PSD** Pulse Shape Discrimination with 8 Channels
 - Later many revised versions of PSD8C and HINP16C are developed

- HiRA High Resolution Array Detector
 - An Array of Silicon Strip Detectors
 - 2 Silicon detectors of 65 μ m & 1.5 mm

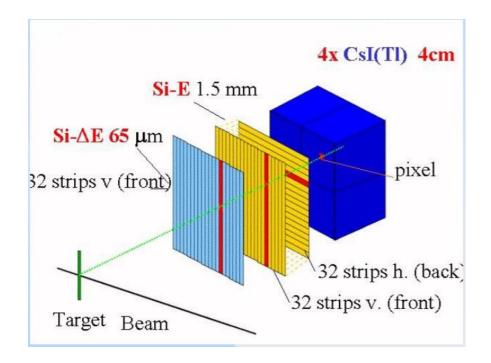


Fig.2 A look at Silicon Strip Detectors in HiRA © Stephanie_Simpson

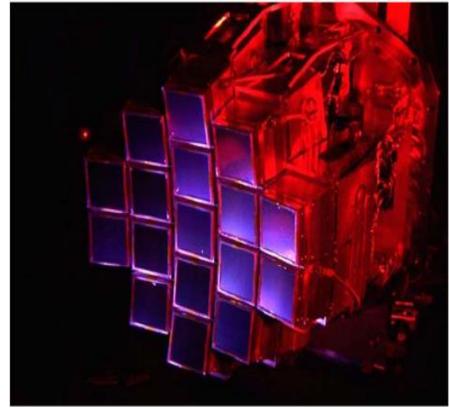


Fig.1 HiRA – High Resolution Array Detector

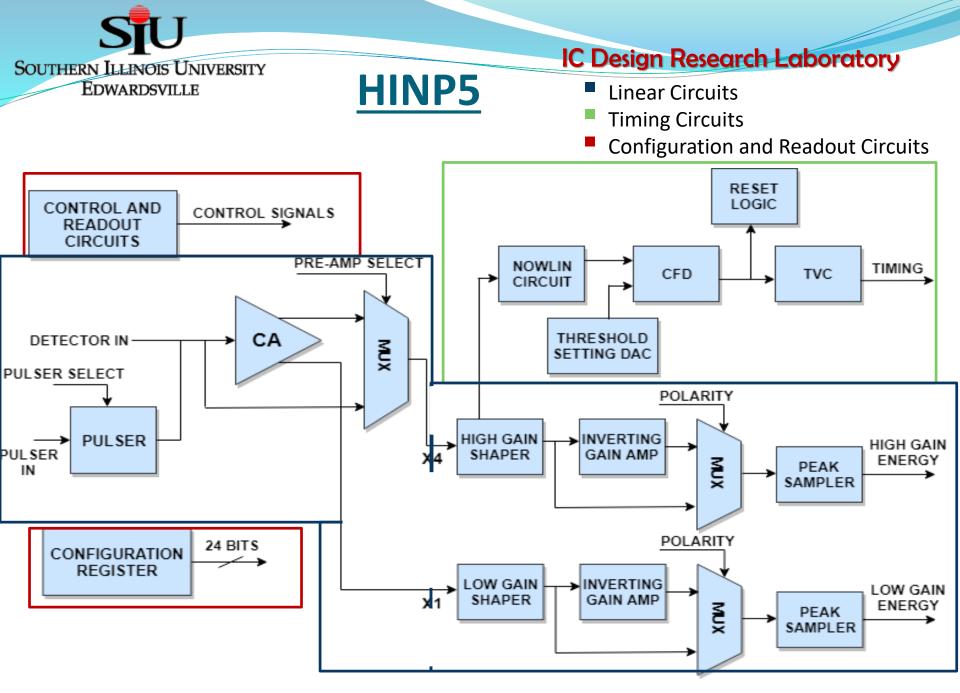


Fig.3 Block Diagram of a typical HINP5 channel © Korkmaz Anil

SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE

IC Design Research Laboratory

High Level System Design

- HINP5 chip generates analog pulse trains for both timing and energy of incident radiation.
- Need for digitization ?
- The Chipboards has
 - A simple Xilinx FPGA
 - 2 HINP5 chips
 - 3 ADC's for each HINP5 chip

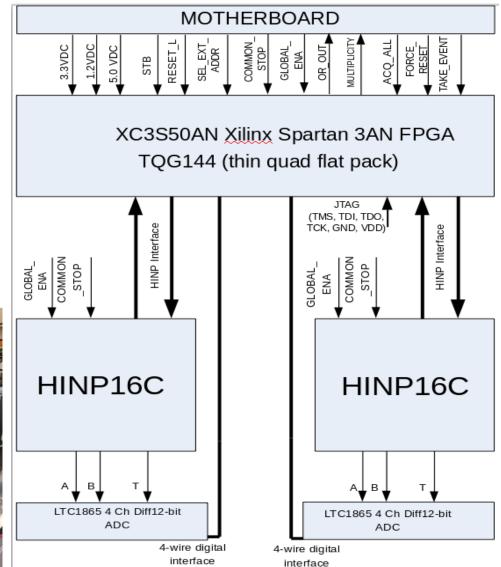


Fig.4 Block Diagram of the System

Digital Design using EDI Tools

- A Verilog driven digital design
- Cadence's EDI(Encounter Digital Implementation) computer aided design tools.
- Standard cell design approach
- Why Standard Cell Design ?
 - Building blocks: Logic cells from the digital standard cell library.
 - Less amount of design effort.
 - Speeds-up the design phase of the digital circuits[Eriksson et al., 2019].

SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE IC Design Research Laboratory

Standard Cell Design Approach

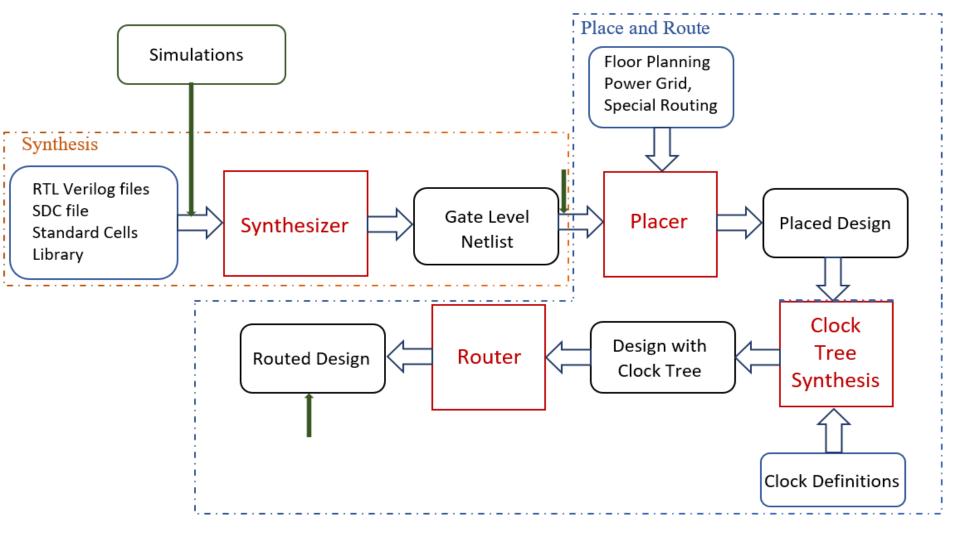


Fig.7 Standard Cell Design Flow

SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE

IC Design Research Laboratory

Fig.8 Exporting the design from cadence EDI tools to Cadence IC station

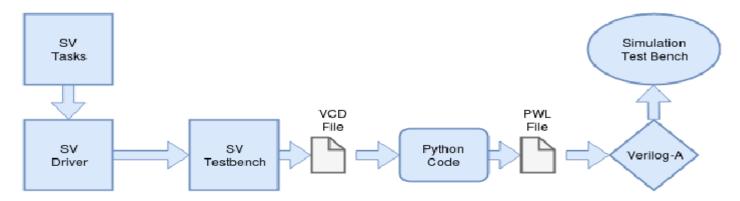
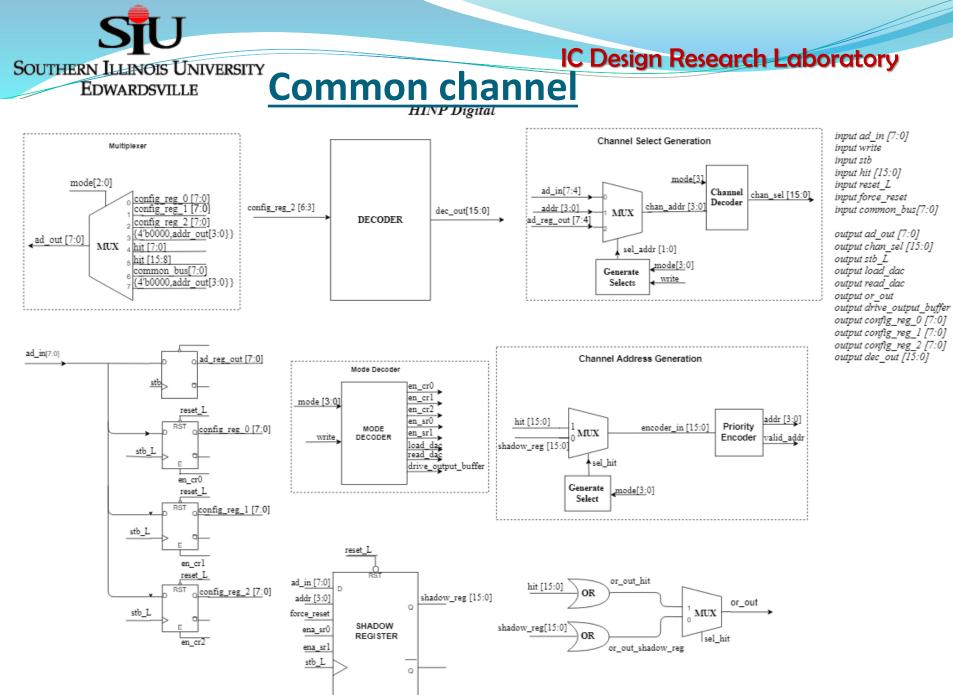



Fig.9 Electrical Simulation testing procedure © Bryan Orabutt

stb ,

Configuration and Readout Electronics

Provides proper control signals Configuration BIT

for all the sixteen signal

channels and does readout.

- 24 Configuration bits
- Readout electronics

5	Configuration Register	BIT Position	Name	Function
	config_reg_0			0: Default 1: Pulsing EVEN channels
	config_reg_0	1	USE_ODD_PULSER	0: Default 1: Pulsing ODD channels
	config_reg_0	2	NOWLIN_CAP0	Selects one of the 16
	config_reg_0	3	NOWLIN_CAP1	capacitors to
	config_reg_0	4	NOWLIN_CAP2	Set the NOWLIN delay (
	config_reg_0	5	NOWLIN_CAP3	0.5pF to 8 pF)
	config rog 0	6		0: Long Mode (Rise time constant: 12ns – 192ns) 1: Short Mode (Rise time constant: 1ns
	config_reg_0	0	NOWLIN_MODE	- 16ns)
	config_reg_0	7	BUFFER_BIAS_HG	0: Bias is 50mv 1: Bias is 25mv

Table.1 Bit assignments of configuration register cr_reg_0

Configuration	BIT			Configuratio n	BIT		
Register	Position	Name	Function	Register	Position	Name	Function
config_reg_1	0	BUFFER_BIAS_HG_PO L	-	config_reg_2	0	TVC_2_USEC_ MODE	1: TVC 2 usec full range 0: TVC 250 nsec range
config_reg_1	1		0: Bias is 50mv 1: Bias is 25mv	config_reg_2	1	EXT_CHARGE_ AMP	0: Use internal charge amp 1: Use external charge amp
config_reg_1	2	BUFFER_BIAS_LG_PO	-	config_reg_2	2	HOLES	0: Electrons Collection 1: Holes Collection
config_reg_1	3		0: Bias is 50mv 1: Bias is 25mv	config_reg_2	3	DLY_VC0	4-bit value that determines
config_reg_1	4	BUFFER_BIAS_TVC_P OL	-	config_reg_2	4	DLY_VC1	the 16 delay times by the auto reset block before the channels auto
config_reg_1	5	AGND TRO		config_reg_2	5	DLY VC2	reset.
config_reg_1	6	AGND TR1	Allows to adjust AGND voltage (1.4	config reg 2		DLY_VC3	
config_reg_1	7		to 1.8v in 50mV step)	config reg 2	7	DLY_VC4	1 bit that determines the width of the digital reset to be either 100nsec or 1usec

Table.2 Bit assignments of configuration registers cr_reg_1 & cr_reg_2

Modes of Operation

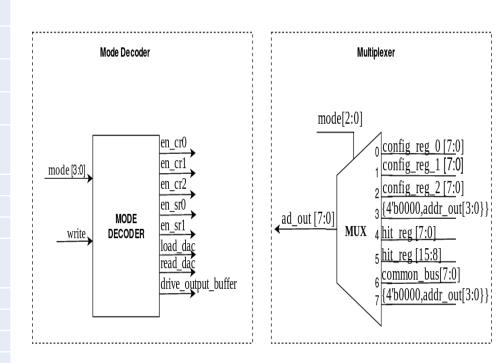


Fig.11 Mode Decoding Circuit in common channel

ad_reg [7:0] <--- {addr, mode}

addr: Upper nibble of ad_reg mode: Lower nibble of ad_reg

write	mode[2:0]	Operation
0	"000"	ad_out < config_reg_0[7:0]
0	"001"	ad_out < config_reg_1[7:0]
0	"010"	ad_out < config_reg_2[7:0]
0	"011"	ad_out < {addr_out[3:0], 4'b000}
0	"100"	ad_out < hit_reg_lower[7:0]
0	"101"	ad_out < hit_reg_upper[7:0]
0	"110"	ad out < 8'd0
0	"111"	ad_out < {addr_out[3:0] , 4'b0000}
1	"000"	config_reg_0 < ad_in[7:0]
1	"001"	config_reg_1 < ad_in[7:0]
1	"010"	config_reg_2 < ad_in[7:0]
1	"011"	addr_in < ad_in[7:4]
1	"100"	shadow_reg_lower < ad_in[7:0]
1	"101"	<pre>shadow_reg_upper < ad_in[7:0]</pre>
1	"110"	dac_reg(addr) < ad_in[7:0]
1	"111"	addr in < ad in[7:4]

SOUTHERN ILLINOIS UNIVERSITY

Edwardsville

Table 3. Modes of Operation

SOUTHERN ILLINOIS UNIVERSITY

IC Design Research Laboratory

EDWARDSVILLE Channel Address Generation

Verilog logic of channel address generation

```
/**** Digital Logic for Channel Address Generation ****/
// MUX Logic for choosing either hit register or shadow register
reg [15:0] encoder in;
always @(*) begin
         case (sel hit)
                 0: encoder in = shadow reg;
                1: encoder in = hit;
         endcase
end
.// Generate sel hit bit for choosing either hit register or shadow register
assign sel hit = (mode[2:0] == 3'd3 & ~write)? 1'b0 : 1'b1;
// Priority Encoder Block
integer j;
always @(*) begin
    if (|encoder in) begin
         for (j=15; j>=0 ; j=j-1) begin
                 if (encoder in[j]) begin
                         addr = i:
                         valid addr = 1'b1;
                 end
         end
     end
    else begin
         addr = 4'd0:
         valid addr = 1'b0;
```

end

end

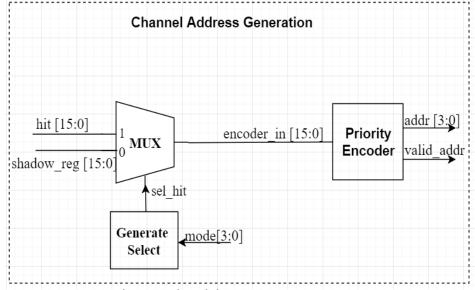
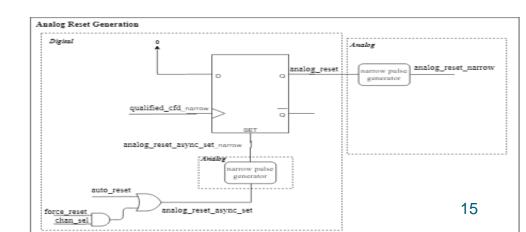
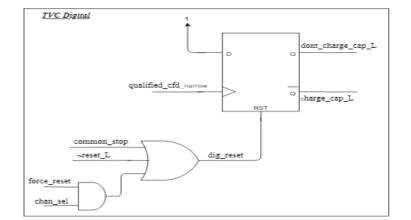


Fig.12 Channel Address Generation Circuit

Example:


If odd channels are hit;


hit[15:0] \rightarrow encoder_in[15:0]	addr[3:0]	valid_addr
1010_1010_1010_1010	0001	1
readout;		


hit[15:0] → encoder_in[15:0] addr[3:0] valid_addr 1010_1010_1010_1000 0011 1

Signal Channel

Layout of HINPdigital

				ur
				bd_aut<⊅
	ويستعلوا المرازي وتبعيهمها الاباسي والاراب			be_n#dS>
				be_ade(2)
				bularid (3) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0
			n di Kartin shirak Persikan	d auters
المستقادين المراد المراد المراجع المراجع في الدين المراجع المراجع في عليه محمد التي م		and well as a subset of a second s		bd_sut(30) Verlig_reg_9(3) Verlig_reg_1(30) Verlig_reg_1(40) Verlig_reg_1(40) Verlig_reg_1(40)
				۵۰۰۰۰۵ ۲۰۰۰۰۵ ۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
				Marker State
				od_in<4>
				bd_m<2>
				ct>nube

Fig.15 Layout of HINP common channel digital logic generated by place & route tool

Layout of Channeldigital

	pd_in<%> pd_in<(> pd_in<2> • • •	₽d_in<3> ₽d_ln<4> ₽d_in<5> ₽d_ln<6	> bd_in<7> btb_L feeet_L fton	ce_reseliplobal_enaftrive_outpfilicity#filer	it Chan_sel fake_sventt	ommon_etop • • • • • •	• •
שייים לאונוזטל_ ופצאר מציוור באבר עם איין איין איין איין איין איין איין איין							
Tananag_resel_async2set			SPRI (L. 11) Maria - Sana Maria - Sana Maria - Maria - Maria - Maria - Maria - Maria Maria - Maria - Maria - Maria - Maria - Maria - Maria				
Batto_reset_namew							
						inalog	• • • g_raset
							• • •
		, n III a sh					•
TERE_out						spLct	han + +
feod_chan							
· · · ·	duk_reg toduc_reg<19uc_reg<	adurreg < 3 Juctrey < 4 Juctrey < 4 Juctrey	testactreg.770ad_dac_ead_dat_car	• •กาณายันองเสียงกยันช่งสก่างเก่ยันองเสียงกยัน	ดสอีฟอก_ปังหาศ์หวา_ปังอสซีปีสอก_ปัง	91810n_bds<7>	• •

Fig.16 Layout of HINP signal channel digital logic generated by place & route tool

Summary

- Layout Dimensions:
 - HINP Digital: 427 μm X 223 μm
 - Channel Digital: 191 μm X 119 μm
- A Verilog driven design carried out using cadence EDI tools and digital standard cell library in 0.35-micron AMS design Kit.
- Electronic simulation performed using NC-Sim to verify the behavioral description of the digital logic implemented.
- Electrical simulations were also performed on the digital designs.
- The simulation results are as expected with out any issues.

Future Work

IC Design Research Laboratory

- Enhance the current SDC (Synopsys Design Constraints) file.
- The configuration and readout electronics digital design need to be binded with other analog circuits in the chip.
- Chip level simulations including the parasitic extraction still need to be done.
- Final Layouts of the HINP5 chip need to be finished.
- Expected to send for fabrication in late 2019 submissions to MOSIS.

Queries ?

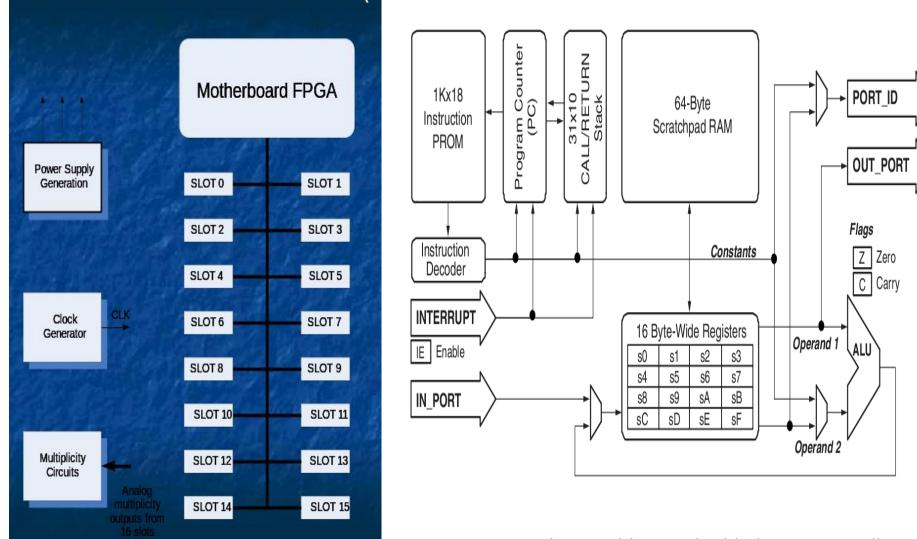


Fig.5 Block Diagram of the Motherboard

Fig.6 An 8-bit Pico blaze embedded microcontroller in FPGA.

Shadow Register

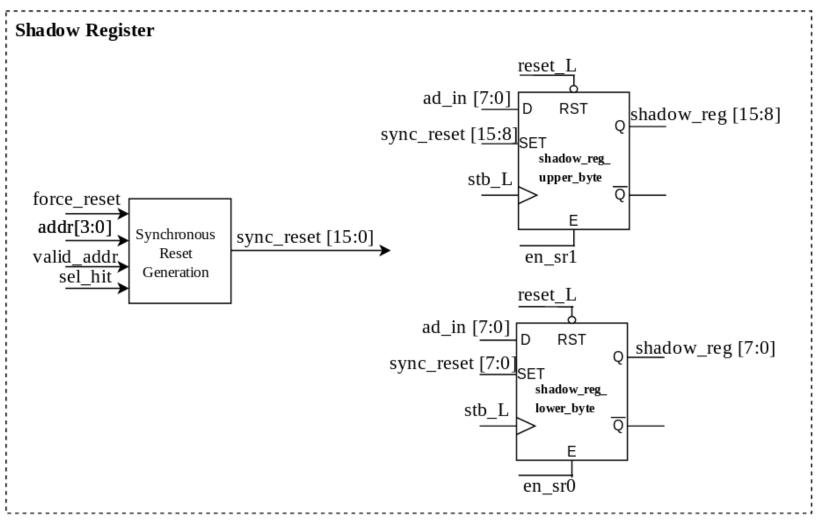


Fig.10 Shadow register in common channel

DAC Digital

Bit Position	Name	Function			
0	DATA[0]				
1	DATA[1]	5-bit value that sets the threshold for the DAC at what level cfd fires			
2 3	DATA[2]				
4	DATA[3] DATA[4]				
5	DATA[5]	This bit sets the polarity of the DAC 0: Positive Polarity 1: Negative Polarity			
		0: Disables the signal channel locally 1: Enables the signal channel			
6	A	locally			
7	UNUSED	UNUSED			

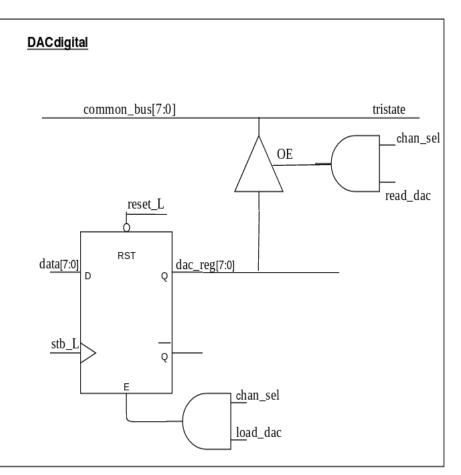


Fig.13 DAC digital circuit in signal channel

Table 4. BIT assignments of DAC register in signal channel