
Design of the Configuration and Readout Electronics for a Multi-Channel Integrated
Circuit Used in the Detection and Monitoring of Ionizing Radiation

by SaiGeetha Allipuram, Bachelor of Science

A Thesis Submitted in Partial
Fulfillment of the Requirements

for the Degree of
Master of Science

in the field of Electrical Engineering

Advisory Committee:

George L. Engel, Ph.D, Chair

Bradley Noble, D.Sc

Timothy York, Ph.D

Graduate School
Southern Illinois University Edwardsville

May, 2019

c© Copyright by SaiGeetha Allipuram May, 2019
All rights reserved

ABSTRACT

DESIGN OF THE CONFIGURATION AND READOUT ELECTRONICS FOR A
MULTI-CHANNEL INTEGRATED CIRCUIT USED IN THE DETECTION AND

MONITORING OF IONIZING RADIATION

by

SAIGEETHA ALLIPURAM

Chairperson: Professor George L. Engel, Ph.D

This thesis describes the design of the configuration and readout electronics for a

multi-channel integrated circuit (IC) which is used in the detection and monitoring

of ionizing radiation in low- and intermediate-energy nuclear physics experiments.

The sixteen channel chip discussed in this thesis can be used in a wide variety of

nuclear physics applications and is suitable for use whenever silicon strip detectors

are employed.

The chip can be used to determine the energy of a charged particle striking the

detector, as well as, the the time interval between the arrival of the particle at the

detector and an externally supplied time reference. The configuration and readout

circuits, common to all of the sixteen signal processing channels, as well as the digital

logic contained within a single signal processing channel, was implemented using the

Verilog Hardware Description Language (HDL) and a 0.35 µm standard cell library.

Moreover, the IC christened HINP5 (Heavy Ion Nuclear Physics chip - Version 5), will

be fabricated using the AMS (Austrian Microsystems) 0.35 µm CMOS process in the

Fall of 2019.

ii

The IC is configured via three 8-bit configuration registers. Moreover, each channel

contains a 6-bit Digital-to-Analog Converter (DAC) which must be programmed to set

a threshold used by the Constant Fraction Discriminator (CFD), located in the timing

branch within each channel. The IC supports data sparsification where a channel

automatically resets itself (after a programmable delay time) unless explicitly directed

to enter readout mode by an externally generated control signal.

The Verilog-driven design described in this thesis was implemented using Cadence’s

EDI (Encounter Digital Implementation) tools for synthesis and place n’ route. The

standard cell designs were then imported into Cadence’s Virtuoso custom IC tools

and validated at the electrical level. The use of the a standard cell approach greatly

reduced design time and allows for changes to be made easily to the readout and

configuration logic.

iii

ACKNOWLEDGEMENTS

I would like to convey my sincere gratitude to Professor Dr. George Engel for

mentoring me in every phase of my Master’s study. His guidance helped me when I

was struggling during my research and also during the writing of this thesis. I could

not have envisioned a better mentor for my Master’s work. I also wish to thank Dr.

Lee Sobotka, Mr. Jon Elson, and Dr. Robert Charity (Department of Chemistry at

Washington University Saint Louis) for their constant support in this project. I would

like to thank my fellow graduate students: Bryan Orabutt, Lakshmi Teja Vipparla,

Jayasurya Burla, Anil Korkmaz, Monjour Rafi, Lohith Chowdary Chilukuri and all of

the others who contributed to the design of the HINP5 chip.

I wish to thank the National Science Foundation (NSF) for supporting my research

through NSF-MRI Grant # 1625499. I would also like to thank Dr. Timothy York,

Dr. Bradley Noble, Dr. Robert Leander, and the ECE faculty members at SIUE, who

have supported me throughout my education at SIUE. With their support, I was able

to explore new horizons.

I would not have achieved my goals without my companions Dheeraj, Vaibav,

Lavanya, Sindhu, and Sohan who have supported me during my graduate studies.

Finally, I would like to extend my appreciation to my family: my father Venkat Reddy

Allipuram, mother, sister and brother are always with me in every aspect.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . viii

LIST OF TABLES . ix

Chapter

1. INTRODUCTION . 1

1.1 Research Background . 1
1.2 HINP IC . 3

1.2.1 Linear circuits . 4
1.2.2 Timing circuits . 6
1.2.3 Configuration and readout circuits 6

1.3 Previous Work . 7
1.4 Object and Scope of Work . 8

2. SYSTEM LEVEL DESIGN . 10

2.1 Introduction . 10
2.2 System Operation . 10
2.3 MotherBoard . 13
2.4 Chipboard FPGA . 15
2.5 PicoBlaze Soft Core . 16
2.6 HINP Interface . 20
2.7 Analog-to-Digital Converter . 21

3. COMMON CHANNEL . 24

3.1 Digital Design Using EDI Tools 25
3.1.1 Why Standard Cell Design 25
3.1.2 Standard Cell Design Flow 26

3.2 Configuration and Readout Electronics 31
3.2.1 Address Register . 31
3.2.2 Configuration Registers 33
3.2.3 Mode Decoding Circuitry 37
3.2.4 Shadow Register . 41
3.2.5 OR Generation . 42

v

3.2.6 Channel Address Generation Circuitry 43
3.2.7 Channel Select Generation Circuitry 45
3.2.8 4-to-16 Decoder . 46

4. SIGNAL CHANNEL . 47

4.1 Hit Register . 47
4.2 Auto Reset Generation . 49
4.3 Analog Reset Generation . 49
4.4 DAC . 50

5. SUMMARY. CONCLUSIONS, AND FUTURE WORK 55

5.1 Summary . 55
5.2 Conclusions . 55
5.3 Future Work . 57

REFERENCES . 61

APPENDICES . 63

A. Verilog Description of Digital Design Implemented in HINP5 63

A.1 Verilog description of the digital circuits in common channel . . . 63
A.1.1 Verilog description of shadow register 66

A.2 Verilog description of the digital circuits in a signal channel . . . 67
A.3 Verilog description of HINP channels 68

B. System Verilog Test Fixture for Verification 71

B.1 SystemVerilog definition of global parameters 71
B.2 SystemVerilog tasks . 72
B.3 SystemVerilog test bench for verification 78

C. SDC Constraints . 83

C.1 HINPdigital SDC file . 83
C.2 Channeldigital SDC file . 83

D. Environment Files Used in Design . 85

D.1 Env file for a HINP digital design used in HINP Chip in TCL . . 85
D.2 Env file for a Channel digital design used in HINP Chip in TCL 87

vi

E. TCL Scripts for EDI . 90

E.1 TCL Script to run Simulation . 90
E.2 TCL Script to run Synthesis . 91
E.3 TCL Script to run Place n’ Route 91
E.4 TCL Scripts to Export Netlist from EDI to Cadence Virtuosos . 92

F. Scripts to Generate Piece Wise Linear files from the VCD Dump file . 94

F.1 Make VCD TCL Script . 94
F.2 VCD to PWL python script . 97

vii

LIST OF FIGURES

Figure Page

1.1 An array of si strip detectors . 2
1.2 Block diagram of typical HINP5 channel[Korkmaz, 2019]. 5

2.1 Block Diagram of the System . 12
2.2 Block Diagram of the MotherBoard 13
2.3 Chipboard connected to one of the 16 slots on motherboard 14
2.4 Spartan 3AN Architecture . 16
2.5 PicoBlaze Embedded Microcontroller 18
2.6 PicoBlaze top-level Interface Connections 19
2.7 Channel Selection Bits in LTC1865 22
2.8 Operating Sequence Diagram . 23

3.1 An example of a VCD file . 30
3.2 Generic schematic of logic that resides in the common channel 32
3.3 Mode Decoding Logic implementation in common channel 37
3.4 Shadow Register . 42
3.5 Circuit that generates OR OUT signal 43
3.6 Channel Address Generation Circuit 43
3.7 Channel Select Generation Circuit 45

4.1 Hit Register . 48
4.2 Auto Reset Generation Circuitry . 49
4.3 Analog Reset Generation Circuitry 50
4.4 DAC Register . 52
4.5 Generic schematic of the digital logic in the HINP5 signal channel . . 54

5.1 Layout of the HINP common channel digital logic generated by
the place n route tool . 58

5.2 Layout of the HINP signal channel digital logic generated by the
place n route tool . 59

viii

LIST OF TABLES

Table Page

3.1 Bit assignments of configuration register 0 34
3.2 Bit assignments of configuration register 1 35
3.3 Bit assignments of configuration register 2 36
3.4 Modes of Operation . 39
3.5 Modes of Operation Continued . 40
3.6 Truth Table of Priority Encoder . 44

4.1 Bit assignments of DAC register in signal channel 53

ix

CHAPTER 1

INTRODUCTION

This chapter is intended to introduce the reader to the subject of radiation monitoring

and will describe how custom multi-channel integrated circuits are useful in the

detection and measurement of ionizing radiation. The IC (Integrated Circuit) outlined

in this thesis, called HINP5 (Heavy-Ion Nuclear Physics- Version 5), is the newest

chip in our research group’s CMOS (Complementary Metal-Oxide Semiconductor)

ASIC (Application Specific Integrated Circuit) ”tool box” for radiation detection. The

ICs in the ”tool box” are being developed by the IC Design Research Laboratory at

Southern Illinois University Edwardsville (SIUE) in alliance with researchers from the

Nuclear Reactions Group at Washington University in Saint Louis (WUSTL).

1.1 Research Background

The IC Design Research Laboratory at SIUE in collaboration with the Nuclear

Reactions Group (Department of Chemistry) at WUSTL have been working, since

2001, to develop a class of multi-channel custom integrated circuits (ICs) useful for

researchers engaged in various nuclear physics experiments where the identification

and measurement of ionizing radiation is required. Usually in these experiments, the

position of interaction within the detector must be precisely estimated, the particle

energy must be measured, and the relative time of arrival of the particle must be

determined.

The groups first achievement was an analog shaped and peak sensing chip. It had

on-board CFD (Constant-fraction Discriminators) and sparsified readout. It is known

as HINP (Heavy-Ion Nuclear Physics). The chip was designed for use with Si-strip

detectors. The second chip, called PSD (Pulse Shape Discrimination), was designed

2

to complement the HINP chip logically in terms of being able to support different

detector types. PSD8C is used with scintillators and uses almost the same supporting

hardware as does HINP. This thesis is devoted to describing the digital logic contained

within the latest generation HINP chip known as HINP5 (HINP Version 5). A typical

array of silicon strip detectors is shown in Figure 1.1.

Figure 1.1: An array of si strip detectors

A Si-strip detector can be defined as a reverse-biased p-n junction diode. When

the radiation energy or the charged particles are detected, a packet of electron-hole

pairs are generated in the detection material. The number of electron-hole pairs

depends on the energy of the particle and on the material it passes through. The

charge packet size is proportional to the energy of the incident radiation. Each of the

17 (blue-shaded) panels, shown in the Figure 1.1, consists of 32 detectors (16 placed

horizontally and 16 vertically).

This is useful in identifying the position where the particle struck. For the purpose

3

of identifying position, two silicon detectors of differing thickness are used (65 µm

and 1.5 mm). The 65 µm detector is single-sided with silicon strips in the vertical

direction while the 1.5 mm detector is double-sided with silicon strips that are vertical

in the front and horizontal on the back.

1.2 HINP IC

As already discussed, HINP5 stands for Heavy Ion Nuclear Physics - Version 5

and is a 16-channel chip. HINP5 is a multi-channel chip which generates sparsified

analog pulse trains for both timing information (in respect to an external reference)

and for linear (pulse height) information. HINP5 is the latest version of the earlier

HINP chips. HINP5 is a custom intergrated circuit that posses some special features

which no commercial IC possesses. Special features of HINP5 are:

• Sixteen(16) independent channels

• Has two different modes operating in parallel: low-gain mode (400 Mev full-range)

and high-gain mode(100 Mev full-range)

• Fast analog multiplicity and channel OR output to help in making decisions

about whether to readout or not

• Auto-reset capability allows for data sparsification

• Supports both negative and positive polarity pulses

• Built-in time-to-voltage converters supporting 250 nsec and 2 µsec full-scale

ranges

• Has on-chip CFDs (Constant Fraction Discriminators)

• Better noise performance(<25 keV)

4

• Can also be used with external charge amplifier

The architecture of a single HINP5 channel is shown in Figure 1.2. Each of the

HINP channels consists of the following primary blocks: charge amplifier (CA), a

pair of slow shapers, a pseudo-constant fraction discriminator (CFD), a pair of peak

samplers, and a time-to-voltage converter (TVC). The signal channels also contains

some bias circuits, reset logic, and digital readout electronics.

The HINP5 chip is designed using the AMS 0.35 µm CMOS process. This CMOS

process supports 4 metal (Metal 4 is an extra thich metal layer) and 2 polysilicon

layers. Designers using this process have access to both 5 V (PMOSM, NMOSM) and

3.3 V (PMOS, NMOS) FETs, Bipolar Junction Transistors (BJTs), and two kinds of

resistors implemented using the POLY 2 layer. One is RPOLYH (lightly doped POLY

2 layer) and the other is RPOLY2 (heavily doped POLY 2 layer). The designer also

has access to double poly capacitors (CPOLY). In the design described in this thesis,

3.3 V FETs (PMOS,NMOS) are used which are faster (and smaller) than the 5 V

FETs. The minimum length of the 3.3 V FETs is 0.35 µm.

As shown in Figure 1.2, HINP5 consists of three major blocks: linear circuits,

timing circuits, and the configuration/readout circuits. In the next section we will

briefly describe operation of a HINP5 signal processing channel.

1.2.1 Linear circuits

The first element in the linear block is the charge amplifier (CA) and it is designed

to have two outputs: high-gain (charge gain of x4) and low-gain (charge gain of x1).

Additionally, one can also utilize an external preamplifier. The purpose of the CA is

to amplify the input charge packet either by a gain of 1 (low-gain) or by a gain of 4

(high-gain).

5

Figure 1.2: Block diagram of typical HINP5 channel[Korkmaz, 2019].

The two outputs (currents) from the CA are the inputs to a pair of slow shapers

(Gaussian low-pass filters). The low-gain shaper output is linear to 400 MeV while

the high-gain shaper output is linear to 100 MeV. Each of these sub-channels generate

sparsified analog pulse trains along with synchronized addresses for digitization by an

off-chip analog-to-digital converter (ADC) [Sadasivam, 2002].

Since it is the peak voltage at the output of the pulse shaper which is proportional

to the detected particle energy, the outputs from the two shapers are presented to a

pair of peak-samplers before being sent off-chip to be digitized by the ADCs. The

input to the slow shaper is a charge packet. The peak sampler was designed to find

only negative peaks, so depending on the polarity (i.e. electron or hole collection) the

output from the shaper may be inverted prior to peak detection.

6

1.2.2 Timing circuits

The timing circuits are responsible for the accurate measurement of the time

elapsed between the particle striking the detector and an external time reference

provided to the chip. The major components of the timing branch are the CFD

(Constant Fraction Discriminator) and the TVC (Time-to-Voltage Converter).

The initial op amp in the pulse shaper is frequently referred to as a CSA (Charge-

Sensitive Amplfier) since it converts the input charge packet to a voltage . The output

of this CSA amp is then fed to the CFD which generates a logic signal that marks the

arrival time of the particle/radiation at the detectctor [Orabutt, 2019]. The use of a

CFD guarantees that the arrival time is not a function of particle energy.

The CFD consists of a leading-edge discriminator (i.e. analog comparator) and a

zero-crossing discriminator. The leading-edge discriminator must transition first and

is used to qualify the zero-cross output which sets the timing. The logic high output

from the CFD indicates that the channel has been hit. The use of a Nowlin circuit

ensures that the timing signal is independent of particle energy.

This CFD (digital) output signal starts a temperature-independent current, which

in turn charges a capacitor in the TVC. Reiterating, the TVCs (one per channel) start

when they receive the signal to start from their respective CFD and stop when an

externally generated timing reference (common to all channels) is applied. The time

when the channel was hit relative to the common stop signal is proportional to the

voltage across the TVC capacitor.

1.2.3 Configuration and readout circuits

The HINP5 IC has both digital control and analog circuits (that provide proper

biasing for the channels) in the central common channel. The common channel also

contains the configuration and readout circuits. These circuits configure the HINP5

7

chip. The readout circuits provide data in the form of three analog pulse trains

(high-gain peak voltage, low-gain peak voltage, and the TVC voltage) along with

synchronized digitally encoded channel addresses to the off-chip ADCs and FPGA

(Field Programmable Gate Array) logic.

As shown in the Figure 1.2, the configuration circuitry consists of three 8-bit

registers that can be loaded selectively to generate various control signals. The control

signals generated by the configuration registers are capable of setting the Nowlin delay,

setting Nowlin mode (short versus long), adjusting the AGND (signal ground) voltage,

selecting even channels or odd channels for pulsing, and selecting TVC measurement

range. The TVC can be switched between the two ranges: 250 ns full-scale and 2 µs

full-scale. The biasing, configuration, and the readout circuits are positioned at the

center of the chip.

1.3 Previous Work

The fundamental architecture of the HINP chip has remained relatively unaltered

over the span of many design revisions until recently being significantly changed.

The first HINP IC designed had 16 signal channels. It was called HINP16C and

unfortunately was never used in experiments due to a design error. It had design issues

such as poor linearity and poor noise performance. The revised HINP IC, HINP2, with

16 channels was used in many experiments using the HiRA (High Resolution Array)

Si array had two internal CSA (Charge Sensitive Amplifier) gain modes. The modes

were referred to as high-gain (dynamic range of 400 MeV) and low-gain (dynamic

range of 100 MeV). The gain modes could not, however, be used at the same time. It

had a shaper with a fixed peaking time of 1.2 µs , and each channel possessed a TVC

with two time ranges: 250 ns and 2 µs.

HINP3 (version 3) had a few additional features such as a shadow register, and the

8

fast shaper circuit in the CFD module was modified to make it programmable. The

addition of the shadow register helps users to determine which channels have been hit

prior to readout whereas the modification of the fast shaper circuit allows users to select

one of two time constants. The HINP3 IC displayed considerably better performance

in terms of both linearity and energy resolution i.e. the internal CSA gains were 30%

greater compared to the HINP2 design. The timing performance of HINP3 was also

proven to be better along with the additional features. But unfortunately the changes

made to integrate the shadow register into the design affected the auto-reset circuit

which makes the data sparsification feature of the chip possible.

Later, HINP4 (version 4) was fabricated to correct the problem with the auto-reset

circuit, increase the dynamic range properties and also to remedy some of the issues

identified with the on-chip TVC circuits. In HINP4, even though some of the channels

displayed good linearity, some (random from chip to chip) of the other channels

suffered from linearity issues. The version 5 IC, detailed within this thesis, is designed

to achieve even better performance than its antecedents in terms of linearity and

noise. This thesis describes in detail the digital configuration and readout electronics

implemented in the HINP5 chip.

1.4 Object and Scope of Work

The object of this thesis work is to design the readout and configuration circuits

for HINP5. HINP5 is intended for use in the detection and measurement of ionizing

radiation in instruments used for experiments in low- and intermediate-energy nuclear

physics and for researchers working with radioactive ion beams. HINP5, like the

earlier versions, is an analog shaped and peak sensing chip used with arrays of Si-strip

detectors.

There are five chapters in this thesis. Chapter 1 has a brief introduction about the

9

evolution and architecture of the HINP IC. In Chapter 2, we will describe the overall

system-level design. In particular, the chipboards upon which the HINP chips reside

along with the motherboard that the chipboarbs are plugged into will be discussed.

A discussion of how the HINP chip interfaces to the chipboard FPGA. Chapter 3

describes in detail the digital circuits which reside in the common channel of HINP5. In

Chapter 4, the digital logic contained within an individual signal channel is described

in detail. Finally, Chapter 5 will provide a summary of the work done so far, and

describes the future work that needs to be done on HINP5.

This thesis focuses only on the design of the digital configuration and readout

electronics residing on HINP5. Details about the linear branch circuits in HINP5 are

covered in another thesis [Korkmaz, 2019], and the details on the timing branch of

HINP5 are discussed in yet a third thesis [Burla, 2019]. An earlier thesis describes

the CFD related circuits [Orabutt, 2019].

10

CHAPTER 2

SYSTEM LEVEL DESIGN

2.1 Introduction

In this Chapter we will discuss the Field Programmable Gate Array(FPGA) and

its design which directly interfaces to the HINP5 ICs. Before going into details about

the FPGA design, there is a need to understand the system level design where the

FPGA interacts with a motherboard, two HINP chips and several ADCs. Bold-faced

words in this chapter correspond to signal names.

2.2 System Operation

The HINP5 chip generates analog pulse train outputs for both timing and energy

along with synchronized digitally encoded channel addresses. There is a need to

digitize the analog outputs using an external Analog to Digital Controller (ADC).The

reason for digitization is that transmitting high resolution analog data is prone to

degradation due to environmental noise where as transmitting the digital data is less

prone to loss when transmitted over significant distances.

The chipboards (CBs), which in turn plug into the motherboard (MB), are designed

so that the analog outputs from the HINP5 chip are digitized locally. The chipboard

contains two HINP5 ICs, a Spartan 3A Xilinx FPGA, three ADCs, and a small

amount of support circuitry. The Xilinx Field Programmable Gate Array (FPGA),

shown in the Figure 2.1 supports two 8-bit PicoBlaze micro-controllers. The PicoBlaze

is a softcore provided by Xilinx and must be programmed in assembly language

but uses relatively little resources on a Spartan3A FPGA. The analog pulse trains

produced by the HINP chip are digitized by the LTC1865 ADC manufactured by

Linear Technologies.

11

The FPGA interfaces with the ADCs via a 4-wire digital interface. The 4-wire

digital interface consists of SCLK (serial clock), SDI (serial data in), SDO (serial

data out) and CONV (start conversion). The analog data from both of the HINP

chips is simultaneously digitized and stored in the FPGA memory.

The Xilinx FPGA contains a two-port shared Random Access Memory (RAM).

The two PicoBlazes share the memory. The motherboard acquires data from the

FPGA by issuing four acquisition clocks per channel. On the first clock the chip ID

and channel address will be read out. On succeeding clock pulses the ADC data for

the A, B, and T values will be read out where A is the high gain pulse shaper output,

B is the low gain pulse shaper output. The digitized data(A, B, and T) stored in the

FPGA memory is sent to the motherboard and then transferred to the XLM.

12

Figure 2.1: Block Diagram of the System

13

2.3 MotherBoard

The motherboard (MB) has sixteen slots. The CBs, briefly described in the

previous section, plug into these slots. Hence, a single MB can services 512 Si-strip

detectors. The power supply generation block on the MB is capable of generating 1.2

V, 3.3 V and 5 V. The supply voltages 1.2 V and 3.3 V are distributed to the HINP

CBs.

The multiplicity circuits on the MB recieve analog multiplicity outputs from the

sixteen slots. Multiplicity outputs are analog voltages proportional to the number of

channels which have been struck by radiation. Each HINP5 chip in the system produces

a multiplicity output. Everytime a channel is ”hit”, the multiplicity output goes up

by approximately 100 mV. If all sixteen channels on the HINP chip have been hit

then approximately 1.6 V is observed on the multiplicity output pin [Orabutt, 2019].

Figure 2.2: Block Diagram of the MotherBoard

The MB generates a master clock (STB) inside the motherboard FPGA and

14

a master reset (RESET L). They are reproduced and used by the FPGA on the

chipboard. The TAKE EVENT, ACQ CLK, and ACQ ACK signals are used to

acquire ADC data. The global enable (GLOBAL ENA) signal enables the sixteen

channels of the HINP chip globally. If the bit is set (GL0BAL ENA = 1) then all

of the channels in the HINP chip are enabled. In addition, each channel has its own

channel register which enables/disables that particular channel. The channel OR

(OR OUT) and MULTIPLICITY signals are sent to the MB. These signals indicate

if any of the channels have yet to be read out. The reset signals : FORCE RESET

and RESET L signals are asserted from the motherboard. RESET L is a master

reset signal which is active low and FORCE RESET when active resets all the

signals. This is done usually after the data acquisition process has completed. In

Figure 2.3, a chipboard is plugged into one of the sixteen slots on the motherboard.

Figure 2.3: Chipboard connected to one of the 16 slots on motherboard

15

2.4 Chipboard FPGA

As already discussed, two HINP chips along with an FPGA and some support

circuitry reside on the system chip boards (CBs). In this section, we will briefly

describe the FPGA which is used on the CB.

A FPGA (Field Programmable Gate Array) can be defined as a Integrated Circuit

(IC) which provides designers with programmable logic blocks and memory blocks

(on-chip storage, RAM, PROM) etc. We use a Xilinx Spartan-3AN FPGA in our

design.

The Spartan-3AN FPGA supports non-volatile RAM storage, which is capable of

storing the configuration data of the FPGA. A JTAG interface is used to program

configuration data into the FPGA. The Spartan-3AN is a very cost-effective non-

volatile FPGA solution. The other key features of the Spartan-3AN FPGA are

[DS5, 2014]:

• Parallel NOR Flash configuration

• SPI serial Flash configuration: uses either the Atmel DataFlash architectures or

STMicroelectronics

• Parallel NOR and SPI serial Flash PROMs supports MultiBoot FPGA configu-

ration

• Embedded 8 bit PicoBlaze controller & 32 bit MicroBlaze processor

• Memory interfaces (DDR supported)

Figure 2.4 shows the 5 basic programmable logic elements of the Spartan-3AN

architecture.

• CLBs (Configurable Logic Blocks) that performs logic

16

• and storage blocks say Latches or Flip-flops using LUTs (Look up Tables).

• Block RAM, has dual port of 18 kbit for data storing purposes,

• Muultiplier Blocks,

• IOBs (Input/Output Blocks), used to interface with external devices also includes

DDR registers supporting high transfer rates.

• DCM(Digital Clock Manager) provides multiplying, delaying, phase-shifting and

dividing clock signals etc [DS5, 2014].

Figure 2.4: Spartan 3AN Architecture

2.5 PicoBlaze Soft Core

The PicoBlaze is an 8-bit micro-controller with a Reduced Instruction Set Computer

(RISC) architecture. Its core is optimized for Virtex II, Spartan 3, Virtex II pro FPGA

17

families [UG1, 2008]. It is completely embedded into the target FPGA and does not

require any external resources. It is extremely flexible and can interface to additional

FPGA logic via its I/O (Input/Output) ports. The PicoBlaze micro controller is

a good fit for this application, as it is compact and consumes less resources on the

FPGA when compared to other 8-bit micro-controllers available in the market. The

controller is programmed in assembly language. A PicoBlaze supports the following

features [UG1, 2008]:

• General purpose registers of 16 byte long for data

• 64 Byte internal scratchpad RAM (Random Access Memory)

• 1024 Instruction PROM (Programmable Read Only Memory)

• Can be expandable with 256X256 I/O ports

• 8 bit Arithmetic Logic Unit (ALU); provided Zero and Carry flags

• Automatic CALL/RETURN stack memory with 31 locations.

• Fast interrupt response

• Assembler with simulator that supports instruction set

A block diagram of the PicoBlaze micro-controller is shown in Figure 2.5, It has

sixteen general purpose registers, designated as s0, s1, and so on through sF. All the

registers are similar with none of them reserved for special operations and has no

priorities set.

The PicoBlaze also has an internal 64 byte scratchpad RAM, addressable directly

(with immediate constants) or indirectly from the register file (using the register

contents) through FETCH and STORE commands. The FETCH instruction reads

18

Figure 2.5: PicoBlaze Embedded Microcontroller

any of the memory location of 64 byte scratchpad RAM into any of the available 16

registers whereas the (STORE) instruction writes/copies the contents from any of

the registers to any of the 64 available memory locations.

The PicoBlaze has a 1K PROM block, as shown in Figure 2.5, capable of exe-

cuting 1024 instructions where each instruction is 18 bits long. These instructions

are compiled using the PSM assembler and then loaded automatically during the

configuration process of the FPGA.The PicoBlaze supports a maximum space of 1K

(1024) instructions of code (000-3FF). The default behavior of the PC can be altered

by the CALL, JUMP, RETURN, Interrupt, RETURNI and the reset operations.

The 8-bit ALU present within the controller is capable of performing basic arith-

metic and logical operations like addition, subtraction, comparisons, bit-wise tests,

AND, OR, XOR, as well as rotate and shift operations affecting the Carry. In case

the INTERRUPT ENABLE flag is set, then the INTERRPUT input is enabled.

The PicoBlaze does not have an accumulator. Instead, the first operand (address) of

the instruction points to the register which will store the result.

19

The PicoBlaze has an automatic reset event. Once the FPGA configuration is

complete, it resets the value of the PC to address 0, disables the interrupts, clears

all the flags etc., but the scratchpad RAM and data registers are not affected by this

reset event. The PicoBlaze micro-controller is expandable as it supports 256 Input

and 256 Output ports. This allows the processor to interface to external peripheral

devices or other FPGA logic.

Figure 2.6: PicoBlaze top-level Interface Connections

Figure 2.6 shows the top-level interface signals of the PicoBlaze micro-controller:

• PORT ID (8-bit long) that outputs the port address,

• IN PORT (8-bit data line) that hold the data during an input operation where

data is read from this port to the specified register (sX) on the rising clock edge

if the READ STROBE is set,

• OUT PORT (8-bit data line) holds the data for 2 clock cycles during output

operations where the controller writes the data (contents of the register, sX) to

this port if WRITE STROBE is set,

• RESET (1-bit input) signal set to high for one clock cycle resets the PicoBlaze

controller automatically following the FPGA configuration,

20

• CLK signal where all the PicoBlaze synchronous components are clocked with

rising clock pulses

• INTERRPUT ENABLE flag set then generates an

• INTERRUPT by setting this input for at-least 2 clock cycles, and if

• INTERRUPT ACK is set notifying that the INTERRPUT event happened

and the signal is set during the second clock cycle of the two-cycle interrupt.

2.6 HINP Interface

As discussed in the previous sections, each of the two PicoBlaze micro-controllers

in the FPGA are programmed to control one of the two HINP5 chips on the chipboard.

The PicoBlaze microcontrollers in the FPGA are programmed to configure both the

HINP5 chips and for acquisition of the analog pulse trains produced by the timing

and linear branches of HINP5. The HINP interface shown in Figure 2.1 consists of a

set of signals helpful in performing the various configuration and readout tasks.

The FPGA writes data into the address and configuration registers present inside

the common channel of the HINP5 chip. When the WRITE signal is made HIGH,

the address and mode information is loaded into the address register on the rising

edge of STB and configuration information is loaded into either the configuration

registers or the DAC registers on the falling edge based on the mode selected during

the rising edge. The data to be written is available on the 8-bit AD bus. AD is a

bidirectional bus which allows an user to input data into the HINP5 chip and output

data from the chip. The strobe, STB, is generated by the FPGA’s PicoBlaze.

During the readout process,the FPGA reads the address of the channel from the

HINP chip that is being processed, and it also monitors the OR OUT output from

21

the HINP chip. The OR OUT is high when at least one channel on HINP has been

hit. After all channels have been read out the OR OUT will return to the low state.

Using the ACQ ALL signal, asserted from the motherboard, one can force the

acquisition of all the sixteen channels on chip. One can also select a particular channel

for data acquisition by giving the channel address on the bus externally when the

SEL EXT ADDR pin is asserted from the motherboard. The HINP chip receives

the COMMON STOP and GLOBAL ENA signals directly from the motherboard.

When the COMMON STOP is brought high, the TVC (Time to Voltage Converter)

in each of the sixteen channels will halt. GLOBAL ENA enables setting of the hit

registers. The readout electronics will be described in more detail in Chapter 3 and

Chapter 4.

2.7 Analog-to-Digital Converter

The chipboards use the Linear Technology’s LTC1865 Analog to Digital Converter

(ADC). It is a 16-bit Analog-to-Digital converter with a programmable 2 channel

MUX (Multiplexer, enabling it to operate in either the single-ended or differential

mode [ADC,]. The conversion starts with the CONV signal going high and waits for

some time (t conv) to finish the conversion. After the conversion completes, the ADC

goes into sleep mode (just draws leakage current). A low on the CONV pin enables

the SDO pin and data is shifted out. The ADC converts analog data to digital and

that data is then transferred serially, synchronized to a clock, SCK. The SDI and the

SDO are the serial input and serial output data pins. Configuration bits are shifted

into the ADC and digital data is shifted out.

The ADC has two analog channels (CH0, CH1) The inputs to these channels

need to be noise-free respective to GND. The first two bits of the SDI input sequence

will configures the MUX as illustrated in the table below.

22

Figure 2.7: Channel Selection Bits in LTC1865

As discussed above, the LTC1865 ADC starts conversion on the rising edge of the

CONV. When the CONV signal goes low, the 2-bit data is clocked into the SDI

pin on the rising edge of shift clock, SCK. Additional data bits clocked in on the

SDI pin are ignored until the next CONV cycle. The LTC1865 supports full-duplex

mode, where receiving and transmitting data is done simultaneously [ADC,]. As

shown in Figure 2.8, the data transfer is synchronized with SCK where each bit is

transmitted on the falling edge of SCK and recieved on the rising edge of SCK in

both receiving and transmitting systems. After the completion of the data transfer,

if one continues to apply clock pulses with the CONV signal low, then the SDO

outputs zeros endlessly.

23

Figure 2.8: Operating Sequence Diagram

24

CHAPTER 3

COMMON CHANNEL

The HINP5 IC is made up of sixteen signal processing channels and a single common

channel placed in the center of the chip. The common channel in HINP5 contains

the digital configuration and readout logic as well as the analog bias circuits that are

common to all sixteen signal channels. The common channel contains analog circuits

such as the ”Power on Reset” (POR) circuit which generates an active low reset pulse

which is guaranteed to be at least 2 µsec long when HINP5 is first powered up. This

POR signal is used to start a PTAT (Proportional-to-Absolute-Temperature) current

generator which provides a 11.5 µA bias current to each of the 16 signal channels

[Orabutt, 2019].

An analog ”signal ground” generator circuit provides an analog signal ground

(AGND). AGND is generally set at a potential halfway between the AVDD and AVSS

rails. This signal ground is used in the analog circuitry in the signal channels as

well as by the off-chip single-to-differential buffers located in the common channel.

The nominal AGND reference voltage is around 1.65 V and can be trimmed using 3

configuration bits.

Each signal channel contains an auto-reset circuit which produces a reset signal

after a programmable delay defined by 4 configuration bits. The configuration bits

are used to select one of 16 currents (logarithmic distribution) which is then used

to discharge a capacitor in the auto-reset circuit located in the signal channel. The

auto-generated reset signal resets the hit register along with the TVC and peak

detector circuits in each of the the sixteen channels if readout is not initiated within

the ”wait” time (delay that is selected via the configuration register). The circuit

25

which generates the current used by the auto-reset circuit is located in the common

channel.

Analog circuits are also located in the common channel which buffer the analog

multiplicity signal as well as single-ended-to-differential buffer circuits which are

used to drive the low-gain, high-gain, and TVC analog pulse trains off the chip in a

differential manner. The LTC1865 expects differential input signals if high performance

is required, as is the case in our application.

In the remainder of this Chapter, we will only discuss the digital configuration and

readout circuits which reside in the common channel. Digital circuits residing in the

signal channel will be covered in Chapter 4 of this thesis.

3.1 Digital Design Using EDI Tools

The design of the configuration and readout electronics was accomplished using a

Verilog driven design style. The design was carried out using Cadence’s EDI (Encounter

Digital Implementation) tools. These tools give designers a way to simulate, synthesize,

then and place n ’route their Verilog driven designs.

3.1.1 Why Standard Cell Design

All the digital circuits discussed in this thesis are implemented using a standard

cell library because the standard cell design speeds up the design phase of digital

circuit design [Eriksson et al., 2019]. Use of this approach also makes it much easier to

modify a design when an error is identified or a feature must be added. This advantage

is very important in our application. After making a change to the Verilog source

code, it only takes a few minutes to re-generate the physical layout of our circuits.

The standard cell design methodology uses pre-designed and pre-tested logic cells

from the digital standard cell library in the 0.35 micron AMS design kit (HITKIT)

26

as the building blocks. Since the standard cell approach requires much less design

effort compared to full-custom layout, more time can be devoted to testing. In

custom layout design, most of the primitive cells are designed from scratch, leaving

an opportunity to choose arbitrary alignment, flexible sizing of the transistors, high

degree of optimization in terms of area,etc. but the standard cell design approach

is generally recommended for designing digital circuits as the custom layout design

methodology is very slow, tedious, and takes more design effort.

3.1.2 Standard Cell Design Flow

Unlike custom design, rather than drawing schematics for the design using a

schematic editor, the standard cell design flow usually starts with the designer creating

a generic schematic of the digital logic to be implemented. The generic schematics

created are used to clearly define the logic that needs to be designed. The schematics

can then be described using a HDL (Hardware Description Language).

The behavioral description of the digital logic described by the generic schematics

must be coded using either Verilog or VHDL. Verilog is almost exclusively used in IC

design and so the HINP5 digital logic is described using Verilog. A SystemVerilog (a

modern, more feature laden version of the Verilog language which is generally used for

creating testbenches) test fixture needs to be created to test if all the circuits designed

function properly. Our test fixture consists of three parts: a SystemVerilog task file

that has various system level tasks defined in it for verification, a local parameters

file that holds the list of parameters that drive specific tasks and a SystemVerilog

testbench that instantiates the design and then applies test vectors to the design.

In addition to the design and test fixture files, we needed to create an ”environment

file” called env.tcl for each of our digital designs. The env.tcl file is one of the Tcl

(Tool Control Language) scripts from the tool box written by Dr. Engel and his

27

graduate students here at SIUE to ease the usage of the EDI computer design tools.

The env.tcl file specifies the design parameters to be set when performing simulations,

synthesis, and place n’ route.

Examples of things which are specified in the env.tcl file include simulation mode

(register transfer language description, synthesized netlist, place n’ route netlist),

basename, list of RTL Verilog files, list of synthesis files, VCD (Value Change Dump)

signals, place n’ route flow specifications, etc. Simulation mode can be set to either rtl,

syn or pnr. The basename should be set to the design name which one is working on,

and place n’ route flow specifications are items such as floorplanning options, spacing

between core and boundary, which router to be used for routing, pin placement around

the core boundary, etc.

One begins by running a behavioral-level simulation of the design. We use the

EDI tool NC-Sim for simulation and then SimVision for visualization. One sets

the simulation mode to ”rtl” in the env.tcl file and then types the command sim in

the Linux command window to invoke the Tcl (Tool Control Lanuage) script, called

sim.tcl from the tool box. See section E.1 of Appendix E. One then analyzes the

simulation results in order to verify that the behavioral description of the circuit

functions properly. No delays are included in a behavioral simulation.

After verifying the behavioral description of the circuit, logic synthesis of the

behavioral design has to be done using a design compiler which converts Verilog

described behavioral models into gate-level netlists. The design compiler in the

Cadence EDI toolset is called RTL Compiler. This synthesis tool selects cells from

the AMS standard cell library. The digital standard cell library provided in the AMS

design kit has around 200 standard logic cells.

A SDC (Synopsys Design Constraints) file must be created which specifies the

design and timing constraints, for example, clock constraints, IO (Input/Output)

28

timing constraints, timing exceptions, etc. Most digital designs have one or more

clocks and the SDC file specify the frequencies of these clock signals. In the SDC file

one can tell the tool that the clock has, for example, a 50 % duty cycle and a period

of 100 ns.

One then synthesizes the behavioral description by typing the command syn in

the Linux command window to invoke a Tcl script, called syn.tcsh. See section E.2

of Appendix E. A gate-level Verilog netlist of the Verilog description is generated.

We then run a simulation of this synthesized design again but with simulation mode

specified as ”syn” this time in the env file. Finally, one analyzes the simulation results

to verify that the design functions correctly. Now the delays of the components/logic

cells are seen but not wire delays.

Before running the place n’ route tool, one specifies the parameters related to

floor planning, power planning, cell placement, etc. in the env.tcl file. Floor planning

includes providing the dimensions of the core, the aspect ratio, the cell utilization

factor, the distance between the core and the boundary, pin assignments, spacing

between the pins, metal layers to be used, etc. Power planning includes setting the

width of the metal as well as the separation between the rails, metal layer to be used

for rails, and more.

One then types the command pnr in the Linux command window to run a Tcl

script, called pnr.tcsh. See Section E.3 of Appendix E. The Encounter Place n’ Route

tool in the EDI toolsuite generates a Verilog netlist. During the process of place n’

route, the complete layout generated is verified to check if there are no geometry and

connectivity errors. Finally, we run the simulation again with simulation mode set

as ”pnr” this time in the env file and verify that there are no timing issues in the

simulation results. In addition to wire delays, there will also be delays from the buffers

that are incorporated during clock tree synthesis.

29

We are now able to export a layout and a schematic from the EDI tools to Cadence

Virtuoso (the custom IC schematic and layout tools). To do this, we simply run two

commands edi2ic and edi2sch in the Linux command window which invokes the Tcl

scripts, called edi2ic.tcl and edi2sch.tcl. See section E.4 of Appendix E. For a complete

description of the flow, the interested reader should refer to sections 9, 10 and 11 in

the ECE484 Lab Manual [G.L.Engel, 2018]. We must export our digital designs to

the custom layout tools so that they can be connected to the analog modules which

were created using the custom layout and schematic entry tools.

Once the design has been exported to Virtuoso, it is necessary to perform Design

Rule Checks, more commonly known as DRCs. Here we check the layout against a set

of foundry supplied design rules. DRC is the step taken to ensure that the design is

”manufacturable”. One then must run a LVS (Layout Versus Schematic) check that

compares the netlist extracted from layout with the netlist created from the schematic.

LVS checks ensure that the schematic and layout agree with one another.

It is now possible to run electrical simulations of the digital logic. To make this

possible, the standard cell design which was imported into Virtuoso is driven by a

Verilog A module instantiated in the Virtuoso testbench. The VerilogA module in

turn instantiates a series of PWL (Piece-Wise-Linear) voltage sources, one for each if

the digital inputs in the design.

The Tcl script make vcd.tcl generates the Verilog code which is used to create the a

(Value Change Dump) file. This code must be included in the SystemVerilog testbench

prior to running the simulation. The VCD file created when the simulation is run

contains a record of all changes in the digital input signals. Figure 3.1 [Orabutt, 2019]

contains a sample VCD file.

A python script (vcd2pwl) then converts the VCD dump file to a series of piece-

wise linear files. The make vcd.tcl script automatically creates the VerilogA module

30

described above. The user only needs to create a symbol for the VerilogA module

before it can be instantiated into the Virtuoso testbench. The rise/fall times, scale

factors and logic levels for the analog signals can be specified in the python script.

See section F.2 of Appendix F. The standard PWL file format is a time-voltage pair

separated by space.

Figure 3.1: An example of a VCD file

31

3.2 Configuration and Readout Electronics

The configuration and readout electronics provide control for all sixteen signal

processing channels. The common channel has three 8-bit configuration registers which

supports 24 configuration bits in total. These configuration registers are selectively

loaded to configure the HINP5 chip. The readout circuits allow for the analog pulse

trains along with there synchronized digital channel addresses to be transmitted to

the FPGA on the CB.

As shown in Figure 3.2, the common channel digital circuits (configuration and

readout) consists of an address register, three 8-bit configuration registers, a 16-bit

shadow register, mode decoding circuitry, OR generation, a 4-to-16 decoder, and

channel address/channel select generation circuits.

Note: Any bold-faced word in this chapter corresponds to the signal name in the

Verilog code of that particular module. The full Verilog description of the digital

modules discussed in this chapter can be found in section A.1 of Appendix A.

3.2.1 Address Register

The address register is an 8-bit register, ad reg, in the common channel that is

used to register address and mode information on the rising edge of stb. This register

resets asynchronously the on falling edge of reset L which is the master reset signal

for the HINP5 chip. The lower nybble contains the mode and the upper nybble the

address.

ad reg ← {address,mode} (3.1)

The address and mode information which is loaded into ad reg comes from an

8-bit wide ad in bus. The address register is a positive edge-triggered D-register

32

Figure 3.2: Generic schematic of logic that resides in the common channel

33

which is clocked by stb and asynchronously reset when the master reset (reset L)

signal goes low.

3.2.2 Configuration Registers

There are three 8-bit configuration registers config reg 0, config reg 1, and

config reg 2 located in the common channel. The enable signal of the specified

configuration register is active when that particular register address and mode is

selected. The data present on the 8-bit wide ad in bus will be loaded into that

designated register on the falling edge of the stb. As the standard cells library

contains only a positive edge triggered register, the configuration registers are clocked

with stb L which is an inverted form of the stb i.e. an active low stb signal.

The three configuration registers holds 24 bits in total. The bit assignments

of Configuration Register 0 are given in the Table 3.1. The bit assignments of

Configuration Register 1 are provided in Table 3.2. Finally, the bit assignments for

Configuration Register 2 are presented in Table 3.3. All three configuration registers

are asynchronously reset when the master reset reset L signal goes low.

34

Configuration

Register

BIT

Poisition
Name Function

config reg 0 0 USE EVEN PULSER
0:Default

1: Pulsing EVEN channels

config reg 0 1 USE ODD PULSER
0: Default

1: Pulsing ODD channels

config reg 0 2 NOWLIN CAP0
Selects one of the 16 capacitors

to set the NOWLIN delay

(0.5pF to 8 pF)

config reg 0 3 NOWLIN CAP1

config reg 0 4 NOWLIN CAP2

config reg 0 5 NOWLIN CAP3

config reg 0 6 NOWLIN MODE

1: Short Mode

(Rise time constant: 1ns - 16ns)

0: Long Mode

(Rise time constant: 12ns - 192ns)

config reg 0 7 BUFFER BIAS HG
0: Bias is 50mv

1: Bias is 20mv

Table 3.1: Bit assignments of configuration register 0

35

Configuration

Register

BIT

Position
Name Function

config reg 1 0 BUFFER BIAS HG POL
0: Positive Polarity

1: Negative Polarity

config reg 1 1 BUFFER BIAS LG
0: Bias is 50mv

1: Bias is 20mv

config reg 1 2 BUFFER BIAS LG POL
0: Positive Polarity

1: Negative Polarity

config reg 1 3 AUTO PEAK
0: Use take event in peak detector

1: Use comparator output

config reg 1 4 SEL SHAPER
0: Routes peak detector to output

1: Routes shaper signal to output

config reg 1 5 AGND TR0
Allows to adjust AGND voltage

(1.4 to 1.8v in 50mV step)
config reg 1 6 AGND TR1

config reg 1 7 AGND TR2

Table 3.2: Bit assignments of configuration register 1

36

Configuration

Register

BIT

Position
Name Function

config reg 2 0 TVC 2 USEC MODE
0: TVC 500 nsec range

1: TVC 2 usec full range

config reg 2 1 EXT CHARGE AMP
0: Use internal charge amp

1: Use external charge amp

config reg 2 2 HOLES
0: Electrons Collection

1: Holes Collection

config reg 2 3 DLY VC0
4 bit value that determines the

16 delay times by the auto reset block

before the channels auto reset.

config reg 2 4 DLY VC1

config reg 2 5 DLY VC2

config reg 2 6 DLY VC3

config reg 2 7 DLY VC4

1 bit that determines the width of the

digital reset to be either 100nsec

or 1usec

Table 3.3: Bit assignments of configuration register 2

37

3.2.3 Mode Decoding Circuitry

On the rising edge of stb, the write signal selects whether data needs to be

written into a register or read out of a register. Specifically, when the write signal is

high then depending on the mode, the configuration data will be written into the

appropriate configuration register, shadow register, or dac register in the designated

channel. The data transfer occurs on the falling edge of the stb. If write is low then

depending on the mode, the appropriate register will be read out of the chip.

Mode decoding circuitry is shown in Figure 3.3. It is composed of a mode decoder

and a multiplexer block which implements combinational logic used to compare the

write, mode and address bits with the encoded logic in them and performs the

specified operation. Initially, the address and mode information present on the 8-bit

wide ad in data bus is loaded into the address register on the rising edge of stb. Then

these address and mode bits are compared with the hard-coded logic implemented

in the mode decoder and multiplexer circuits.

Figure 3.3: Mode Decoding Logic implementation in common channel

Mode Decoder: The hard-coded values in the mode decoder are set to match the

four mode bits and write signal on the chip that must select the specific register. In

38

addition it also matches the address of the channel the register is present then the

specified register’s enable signal is made active to write 8-bit configuration data into

the designated register on the falling edge of the stb.

The en cr0 signal is an enable used to load data into Configuration Register

0. The en cr1 signal is an enable used to load data into Configuration Register 1.

The en cr2 signal is an enable used to load data into Configuration Register 2. The

load dac signal is an enable used to write configuration data into the DAC register

in the channel pointed to by the address bits. The read dac signal is used to read

the contents of the DAC register of the selected channel. The en sr0 is an enable

used to load the lower 8 bits of the shadow register with data, whereas en sr1 is an

enable used to load the upper 8 bits of the shadow register with data on the 8-bit

ad in bus coming from the FPGA. The drive output buffer signal is sent to all

the sixteen signal channels and is used to readout the selected channel.

Multiplexer: The Multiplexer is used to select one of the eight input lines. The lower

three bits of mode is the control bus that is used to select which input should be

connected to ad out which is an 8-bit output bus used to send digital data to the

FPGA from the HINP5 chip. The various modes of operation are detailed in Table

3.4.

39

write
mode

[2:0]
Operation Comments

0 ”000” ad out <— config reg 0[7:0]
Read out the contents of

configuration register 0

0 ”001” ad out <— config reg 1[7:0]
Read out the contents of

configuration register 1

0 ”010” ad out <— config reg 2[7:0]
Read out the contents of

configuration register 2

0 ”011” ad out <— {4’b0000,addr out[3:0]}

4-bit encoded channel address

is lower nibble and upper nibble

is all zeros. In this mode channel

address is derived from the

shadow register.

0 ”100” ad out <— hit reg lower[7:0]
Read out the lower byte

of the hit register

0 ”101” ad out <— hit reg upper[15:8]
Read out the upper byte

of the hit register

0 ”110” ad out <— common bus[7:0]
Read out the contents in

the common bus

0 ”111” ad out <— {4’b0000,addr out[3:0]}

4-bit encoded channel address

is lower nibble and upper nibble

is all zeros. In this mode channel

address is derived from the

hit register

Table 3.4: Modes of Operation

40

1 ”000” config reg 0 <— ad in[7:0]
Loads configuration

register 0 (on posedge stb L)

1 ”001” config reg 1 <— ad in[7:0]
Loads configuration

register 1 (on posedge stb L)

1 ”010” config reg 2 <— ad in[7:0]
Loads configuration

register 2 (on posedge stb L)

1 ”011” addr in <— ad in[7:4]
4-bit channel address supplied

by the FPGA

1 ”100” shadow reg lower <— ad in[7:0]

Loads lower byte of the shadow

register (on posedge stb L) with

data from the FPGA

1 ”101” shadow reg upper <— ad in[7:0]

Loads upper byte of the shadow

register (on posedge stb L) with data

from the FPGA

1 ”110” dac reg(addr) <— ad in[7:0]

Loads dac register in channel

pointed to by addr

(i,e upper 4 bits of ad reg).

Uses the load dac signal and

the sel chan[15:0] vector

1 ”111” addr in <— ad in[7:4]
4-bit channel address supplied

by the FPGA

Table 3.5: Modes of Operation Continued

41

3.2.4 Shadow Register

The common channel contains a register which we call the Shadow Register

(represented as shadow reg in Figure 3.2). Logic associated with this register is

illustrated in Figure 3.4. The Shadow Register is 16-bits wide and has an enable

and an asynchronous reset. The lower and upper bytes of the Shadow Register have

different enable inputs but share a common asynchronous reset. In Figure 3.4, the

en sr0 and en sr1 inputs are enables for the lower and upper bytes of the register,

respectively. The signal reset L is a master reset signal that asynchronously resets

the Shadow Register.

The enables for the shadow register are active when the shadow register mode is

selected. If en sr0 is active then the 8-bit data from FPGA present on the ad in

bus is registered into the lower byte of the Shadow Register on the falling edge of the

stb L and if en sr1 is active then the 8-bit data from FPGA is registered into the

upper byte of Shadow Register on the falling edge of the stb.

In addition to the asynchronous reset described above, individual bits in the register

can be synchronously reset. The channel address (addr[3:0]) determines which bit

will be reset. A valid addr bit, if set, indicates that the address generated is a valid

address. If force reset which comes from the FPGA is asserted then the respective

bit will be reset provided shadow register mode has been selected.

When radiation strikes a channel, a 1-bit hit register present in that channel is

set. Then, if the take event signal comes along, the data in the channels that are hit

are readout and and the hit register in that channel is reset. Generally, only channels

whose hit register has been set are readout. However, there are applications where the

physicists would like to alter which channels are readout. It is in these applications

where the shadow register is useful. For example, one can read the hit register and

42

based on its contents decide which channels to read out and then write to the shadow

register. The shadow register can then be used in the readout process.

Figure 3.4: Shadow Register

3.2.5 OR Generation

The or out signal indicates whether or not there are channels which still must

be read out [Sadasivam, 2002]. See Figure 3.5. The hit-registers in the sixteen

channels, hit[15:0], are logically OR’ed to produce the or out hit signal. The bits

of the shadow register, shadow reg[15:0], are also logically OR’ed to produce

or out shadow reg. If the control signal, sel hit, is high, the or out hit is selected

for use as the or out signal else the or out shadow reg is used. The output from

this circuit indicates that at least one channel has yet to be readout .

43

Figure 3.5: Circuit that generates OR OUT signal

3.2.6 Channel Address Generation Circuitry

The Channel Address Generation (CAG) circuit produces a 4-bit channel address.

See Figure 3.6. Channels are encoded by a priority encoder. The lower channel

number, the higher priority. The input to the priority encoder is either 16-bit hit

register or the 16-bit shadow register. The sel hit determines which one. This sel hit

control signal of 1-bit, selects one of the two inputs to the output line in the 2-1

multiplexer. Our logic includes a flag, valid addr, which indicates whether or not

the channel address 0 is valid. The operation of the CAG module is summarized in

Table 3.6.

Figure 3.6: Channel Address Generation Circuit

44

INPUTS OUTPUTS
OPERATION

encoder in[15:0] addr[3:0] valid addr

0000 0000 0000 0000 0000 0

The 4-bit binary address

generated is not valid since

no channel is being hit.

XXXX XXXX XXXX XXX1 0000 1

The 4-bit binary address

of channel that is being hit

by radiation, generated by

looking at the least significant

bits of the encoder in[15:0]

first then the most significant

ones.Note: 1 represents that

the channel is hit, 0

represents that the channel is

not hit & X notations

represents don’t cares, X

can be either hit or not hit.

XXXX XXXX XXXX XX10 0001 1

XXXX XXXX XXXX X100 0010 1

XXXX XXXX XXXX 1000 0011 1

XXXX XXXX XXX1 0000 0100 1

XXXX XXXX XX10 0000 0101 1

XXXX XXXX X100 0000 0110 1

XXXX XXXX 1000 0000 0111 1

XXXX XXX1 0000 0000 1000 1

XXXX XX10 0000 0000 1001 1

XXXX X100 0000 0000 1010 1

XXXX 1000 0000 0000 1011 1

XXX1 0000 0000 0000 1100 1

XX10 0000 0000 0000 1101 1

X100 0000 0000 0000 1110 1

1000 0000 0000 0000 1111 1

Table 3.6: Truth Table of Priority Encoder

45

3.2.7 Channel Select Generation Circuitry

The Channel Select Generation (CSG) circuit generates a 16-bit wide channel

select bus, chan sel. Each bit of the chan sel bus goes into one of the 16 signal

processing channels. For example, the chan sel bit of the specified channel must be

active to write the data from the FPGA into the channel’s DAC register. There are

several different circuits within a channel which need the channel select.

There are three sources for the channel addresses used to generate the channel

selects. These are ad in, addr, ad reg out. See Figure 3.7. The appropriate 4-bit

channel address is selected depending on the mode and write signals. Then, based

on the channel address, one of the 16 channel select lines will be active. However, if

the most significant bit of the mode bus is active then all the channel select lines will

be active.

Figure 3.7: Channel Select Generation Circuit

46

3.2.8 4-to-16 Decoder

As discussed earlier, the HINP5 IC must perform data sparsification. The physicists

are constantly monitoring the HINP5 analog multiplicity output which indicates how

many channels on the IC have their hit registers set waiting for what they deem are

”interesting” radiation events. Only occasionally they wish to readout the results.

Each signal processing channel in HINP5 contains an auto-reset circuit. After the hit

register is set, the auto-reset circuit waits for some specified duration of time before

resetting itself unless the FPGA asserts the take event signal before the auto-reset

circuit times out. The ”wait” time must be programmable. There are four bits in

configuration register 2 (config reg 2 [6:3]) which determines the ”wait” time.

These four bits are the inputs to a 4-to-16 decoder. One of the 16 output lines

will be active thereby selecting one of 16 different ”wait” times. Actually, one of 16

different currents will be selected to charge a capacitor in the auto-reset circuit. The

length of time it takes to charge the capacitor to a predefined level sets the ”wait”

time. The currents are logarithmically distributed. The ”wait” times range in value

from a few µs to a few ms.

47

CHAPTER 4

SIGNAL CHANNEL

The digital modules in each signal processing channel consists of Hit Register, Auto

Reset Generation, Analog Reset Generation, and DAC as shown in Figure 4.5. Any

boldfaced word in this chapter corresponds to the signal name in the Verilog code of

that particular module. The Verilog description of the digital modules discussed in

this chapter can be found in section A.2 of Appendix A.

4.1 Hit Register

There is a 1-bit hit register in each of the signal channels represented as hit reg in

Figure 4.5. The hit register as shown in Figure 4.1 is a positive edge triggered D-register

with an enable, asynchronous reset and an asynchronous set. The hit register present in

the channel gets set asynchronously if a narrow trigger pulse (qualified cfd narrow)

comes from the CFD circuit which indicates that the channel has been hit. Trigger

pulses are only possible when the channel is enabled (both global and channel enables

are set). The qualified cfd signal is also active when the acq all signal (data acquisition

of all channels) is asserted by the FPGA. Note: acq all is ignored if the enables are

not active.

The hit register is reset synchronously if the force reset signal is asserted. It can

be asynchronously reset either a auto reset narrow pulse if the take event doesn’t

come along after waiting for some specified time (as described in the previous chapter)

or by an external (reset L) pulse.

During readout, data is read from the channels that have been hit when the

take event signal is asserted. Once, the data in a particular channel is read, the hit

register in that channel is reset. Readout continues until the or out goes inactive.

48

Figure 4.1: Hit Register

49

The outputs from the hit registers in the 16 signal channels form a bus (hit[15:0]).

4.2 Auto Reset Generation

The auto reset generation logic produces an auto reset pulse that automatically

resets the digital and analog circuits present in the signal processing channel if the

take event is not asserted after waiting for a specified ”wait” time. This circuit is

presented in Figure 4.2. Note: The vari one shot L signal in the Figure 4.2 is the

timeout signal from autoreset analog circuit as discussed in the previous chapter.

Figure 4.2: Auto Reset Generation Circuitry

4.3 Analog Reset Generation

This analog reset signal is used to reset the analog circuits (for example, the

capacitors in the TVC and the peak detector circuits) present in the signal processing

channel. The analog reset signal will be asserted either if the auto reset pulse comes

along or the channels are forced to reset (external signal from FPGA).

50

The digital portion of the circuit is given in Figure 4.3. When the quali-

fied cfd narrow pulse comes along, the analog reset pulse will be set low on the

rising edge of qualified cfd. The analog reset pulse will be set high asynchronously

when

analog reset async set narrow pulse is asserted.

Figure 4.3: Analog Reset Generation Circuitry

4.4 DAC

Each of the sixteen signal channels has an 8-bit register that stores the configuration

data used to program the DAC (Digital-to-Analog Converter), called dac reg, as

shown in Figure 4.4. The DACs are used to set the thresholds in the leading-edge

circuit in the CFD. Six bits are required to program a DAC. One of the remaining

two bits is a local channel enable while the other is currently unused. The DAC

register is a positive edge triggered D-register with an enable and an asynchronous

51

reset. The control signals load dac, read dac and chan sel are generated in the

common channel (as discussed in the previous chapter).

As already discussed, on the rising edge of the stb the mode and address information

is stored in the address register. Based on the mode and channel address, on the falling

edge of stb the 8-bit data present on the ad in bus is loaded into the specified DAC

register (dac reg) in the designated channel. A DAC register is reset asynchronously

when reset L is active.

The DAC register in each signal channel can be loaded either with a different value

or the same value depending on the mode. One can even readout the contents of the

DAC register in the specified channel by choosing an appropriate mode. The 16 DAC

registers share an 8-bit wide tri-state bus, called common bus, driven by an enable

called (OE).

Please refer to Table 4.1 to learn more about the bit assignments of the DAC

register. Section A.3 of Appendix A to see a simple Verilog model for circuits which

are controlled by the logic described herein which lie outside of the digital block. This

allowed for a testbench to be created which could verify that all sixteen channels were

operating correctly.

52

Figure 4.4: DAC Register

53

BIT Poisition Name Function

0 DATA[0]

5 bit value that sets the threshold for the DAC

at what level cfd fires.

1 DATA[1]

2 DATA[2]

3 DATA[3]

4 DATA[4]

5 DATA[5]

This bit sets the polarity of the DAC

0: Positive Polarity

1: Negative Polarity

6 LOCAL ENA
0: Disables the signal channel locally

1: Enables the signal channel locally

7 UNUSED UNUSED

Table 4.1: Bit assignments of DAC register in signal channel

54

Figure 4.5: Generic schematic of the digital logic in the HINP5 signal channel

55

CHAPTER 5

SUMMARY. CONCLUSIONS, AND FUTURE WORK

5.1 Summary

This thesis describes the design of the configuration and readout electronics for a

multi-channel integrated circuit (IC) which is used in the detection and monitoring

of ionizing radiation in low- and intermediate-energy nuclear physics experiments.

The sixteen channel chip discussed in this thesis can be used in a wide variety of

nuclear physics applications and is suitable for use whenever silicon strip detectors

are employed.

The chip can be used to determine the energy of a charged particle striking the

detector, as well as, the the time interval between the arrival of the particle at the

detector and an externally supplied time reference. The configuration and readout

circuits, common to all of the sixteen signal processing channels, as well as the digital

logic contained within a single signal processing channel, was implemented using the

Verilog Hardware Description Language (HDL) and a 0.35 µm standard cell library.

The IC is configured via three 8-bit configuration registers. Moreover, each channel

contains a 6-bit Digital-to-Analog Converter (DAC) which must be programmed to set

a threshold used by the Constant Fraction Discriminator (CFD), located in the timing

branch within each channel. The IC supports data sparsification where a channel

automatically resets itself (after a programmable delay time) unless explicitly directed

to enter readout mode by an externally generated control signal.

5.2 Conclusions

The Verilog-driven design described in this thesis was implemented using Ca-

dence’s EDI (Encounter Digital Implementation) tools for synthesis and place n’ route.

56

Extensive simulations were performed using the NC-Sim (Cadence HDL simulator)

on the digital logic which belongs to the common channel, as well as for, the logic

which is to reside in each of the 16 signal processing channels. The simulation results

are as expected for the various configuration and readout tasks which the IC must

support. The testbench code was implemented using SystemVerilog and allowed us to

successfully validate our designs.

The standard cell designs were also imported into Cadence’s Virtuoso custom

IC tools and validated at the electrical level. The inputs to the digital blocks were

driven by a verilogA module. The voltage sources in the module were instantiated as

standard SPICE PWL (Piece-Wise-Linear) sources. The associated PWL files for the

PWL voltage sources were generated using NC-Sim and a collection of Tcl/python

scripts that were developed by our research laboratory. These scripts were described

in detail in this thesis. The electrical simulation performance is also as expected and

matches with the simulation results obtained using NC-Sim.

The simulated performance indicates that the digital logic in the IC is working as

expected. The common channel digital occupies an area of 427 µm x 223 µm whereas

the channel digital in each of the sixteen signal channels occupies an area of 191 µm

x 119 µm. The HINP5 IC will be fabricated using the AMS 0.35 micron NWELL

process. The layout of the circuits discussed in this thesis are given in Figures 5.1 and

5.2.

In conclusion, the use of the standard cell methodology greatly reduced the time

required to design these crucial digital circuits, but more importantly it makes it easy

for the design to be modified if errors are detected when the digital logic is integrated

with the analog blocks or if a new feature must be added late in our design cycle.

Since the digital logic was described using Verilog HDL, an up-to-date layout can be

generated literally within minutes after changing the Verilog source code!

57

5.3 Future Work

Currently, the configuration and readout digital circuits implemented in this thesis

have a minimal set of SDC (Synopsis Design Constraints) timing and design constraints,

but there is need to enhance the current SDC constraints file to ensure that the design

is robust. These additional constraints should more accurately describe the circuits

that are driving the inputs of the common channel and signal channel digital circuits.

They must also better characterize the loads that are driven by these digital circuits.

These constraints will be added once the analog blocks have been completed and layed

out.

Also, as discussed in Chapter 2 of this thesis, the digtal logic described in this

thesis must interface to an FPGA on the chipboard. The FPGA design employs the

PicoBlaze soft core. Significant changes will need to be made to the existing PicoBlaze

code to make it compatible with the digital configuration and readout electronics

described herein. It should be noted that the digital logic described in this thesis is

significantly different than the logic associated with earlier versions of the HINP chip.

Moreover, the configuration and readout digital circuits needs to be integrated

with the bias circuits in the common channel and the linear and timing branches in

the signal processing channel to develop the complete HINP5 integrated circuit. The

layouts of the HINP5 circuits need to be finished. Then, more detailed chip level

simulations (including parasitic capacitance) need to be performed to ensure that

HINP5 is working as expected before the chip is submitted for fabrication. When the

chip is returned from fabrication, its performance will need to be characterized.

The HINP5 (Heavy Ion Nuclear Physics chip - Version 5) IC, is expected to be

58

Figure 5.1: Layout of the HINP common channel digital logic generated by the place

n route tool

59

Figure 5.2: Layout of the HINP signal channel digital logic generated by the place n

route tool

60

fabricated using the AMS (Austrian Microsystems) 0.35 µm CMOS process in the

Fall of 2019. It is expected to arrive back from fabrication in Spring 2020.

61

REFERENCES

[ADC,] LTC1864/LTC1865 Power, 16-Bit, 250ksps 1- and 2-Channel ADCs in
MSOP. Linear Technology.

[UG1, 2008] (2008). PicoBlaze 8-bit Embedded Microcontroller User Guide. Xilinx.
v1.1.2.

[DS5, 2014] (2014). Spartan-3AN FPGA Family Data Sheet. Xilinx.

[B.S. Budden, 2015] B.S. Budden, L.C.Stonehill, A. (2015). Handheld readout elec-
tronics to fully exploit the particle discrimination capabilities of elpasolite
scintillators. Nuclear Instruments and Methods in Physics.

[Burla, 2019] Burla, J. (2019). Design and analysis of the timing branch of an
integrated circuit for use in nuclear physics experiments employing si-strip
detectors. Master’s thesis, Southern Illinois University Edwardsville.

[Engel, 2016] Engel, G. (2016). A multi-channel discriminator ic. http://www.siue.
edu/~gengel/ece584WebStuff/CFDchip.pdf. accessed : 2017-1-10.

[Eriksson et al., 2019] Eriksson, H., Henriksson, T., Svensson, C., and Larsson-
Edefors, P. (2019). Full-custom vs. standard-cell design flow a quantitative
adder comparison.

[G. Engel, 2007] G. Engel, M. Sadasivam, M. N. (2007). Multi-channel integrated
circuit for use in low and intermediate energy nuclear physics - hinp16c. Nuclear
Instruments and Methods in Physics.

[G.L.Engel, 2018] G.L.Engel (2018). ECE484 AMS HITKIT Tutorial-Version 4.1.
Southern Illinios University Edwardsville.

[G.L.Engel et al., 2009] G.L.Engel, M.J.Hall, Proctor, J., Elson, J., L.G.Sobotka,
R.Shane, and Charity, R. (2009). Design and performance of a multi-channel,
multi-sampling, psd-enabling integrated circuit. Nuclear Instruments and Meth-
ods in Physics.

[Helmuth, 2005] Helmuth, S. (2005). Semiconductor Detector Systems. Oxford Uni-
versity Press, New York.

[I. Tilquin, 1995] I. Tilquin, Y. El Masri, M. P. (1995). Detection efficiency of the neu-
tron modular detector demon and related characteristics. Nuclear Instruments
and Methods in Physics.

[Korkmaz, 2019] Korkmaz, A. (2019). Design and analysis of the linear branch of
an integrated circuit for use in nuclear physics experiments employing si-strip
detectors. Master’s thesis, Southern Illinois University Edwardsville.

http://www.siue.edu/~gengel/ece584WebStuff/CFDchip.pdf
http://www.siue.edu/~gengel/ece584WebStuff/CFDchip.pdf

62

[N. Zaitseva, 2012] N. Zaitseva, B. L. Rupert, I. P. (2012). Plastic scintillators with
efficient neutron/gamma pulse shape discrimination author links open overlay
panel. Nuclear Instruments and Methods in Physics.

[Orabutt, 2019] Orabutt, B. (2019). Design and analysis of a multi-channel discrimi-
nator integrated circuit for use in nuclear physics experiments. Master’s thesis,
Southern Illinois University Edwardsville.

[Proctor, 2007] Proctor, J. (2007). Design of a multi-channel integrated circuit for use
in nuclear physics experiments where particle identification is required. Master’s
thesis, Southern Illinois University Edwardsville.

[Rabaey, 2003] Rabaey, J. (2003). Digital integrated circuits : a design perspective.
Pearson Education, Upper Saddle River, N.J.

[Sadasivam, 2002] Sadasivam, M. (2002). A multi-channel integrated circuit for use
with silicon strip detectors in experiments in low and intermediate physics.
Master’s thesis, Southern Illinois University Edwardsville.

[Tsividis, 2011] Tsividis, Y. (2011). Operation and modeling of the MOS transistor.
Oxford University Press, New York.

[Weste, 2006] Weste, N. (2006). CMOS VLSI Ddesign: A Circuits and Systems
Perspective. Pearson Education, Delhi.

63

APPENDIX A

Verilog Description of Digital Design Implemented in HINP5

A.1 Verilog description of the digital circuits in common channel

// This is Verilog that describes digital logic in HINP5

‘timescale 1ns/100ps

module HINPdigital(input [7:0] ad_in ,

input write ,

input stb ,

input reset_L ,

input [15:0] hit ,

input force_reset ,

input tri [7:0] common_bus ,

output reg [7:0] ad_out ,

output or_out ,

output reg [15:0] chan_sel ,

output reg drive_output_buffer ,

output reg load_dac ,

output reg read_dac ,

output reg [7:0] config_reg_0 ,

output reg [7:0] config_reg_1 ,

output reg [7:0] config_reg_2 ,

output reg [15:0] dec_out ,

input stb_L

);

// Register for Address and Mode Information

// Asynchronous Reset

// Clocked of postive edge strobe

reg [3:0] chan_addr;

wire [3:0] mode;

wire [7:0] ad;

reg [7:0] ad_reg_out;

reg en_cr0 , en_cr1 , en_cr2 , en_sr0 , en_sr1;

always @(posedge stb or negedge reset_L) begin

if (~ reset_L) ad_reg_out <= 8’d0;

else if (stb) ad_reg_out <= ad_in;

end

assign mode = ad_reg_out [3:0];

// We need three 8-bit configuration registers

// Configuration Register 0 holds: config_reg_0 [0]= USE_EVEN_PULSER; config_reg_0 [1]=

USE_ODD_PULSER;config_reg_0 [2]= NOWLIN_CAP0;

// config_reg_0 [3]= NOWLIN_CAP1; config_reg_0 [4]=

NOWLIN_CAP2; config_reg_0 [5]= NOWLIN_CAP3;

// config_reg_0 [6]= NOWLIN_MODE; config_reg_0 [7]= BUFFER_BIAS_HG;

always @(posedge stb_L or negedge reset_L) begin

if (~ reset_L) config_reg_0 <= 8’d0;

else if (en_cr0) config_reg_0 <= ad_in;

end

// Configuration Register 1 holds: config_reg_1 [0]= BUFFER_BIAS_LG; config_reg_1 [1]=

BUFFER_BIAS_TVC;config_reg_1 [2]= UNUSED;

// config_reg_1 [3]= UNUSED; config_reg_1 [4]= UNUSED;

config_reg_1 [5]= AGND_TR0;

// config_reg_1 [6]= AGND_TR1; config_reg_1 [7]= AGND_TR2;

always @(posedge stb_L or negedge reset_L) begin

64

if (~ reset_L) config_reg_1 <= 8’d0;

else if (en_cr1) config_reg_1 <= ad_in;

end

// Configuration Register 2 holds: config_reg_2 [0]= TVC_2_USEC_MODE; config_reg_2 [1]=

UNUSED;config_reg_2 [2]= UNUSED;

// config_reg_2 [3]= DLY_VC0; config_reg_2 [4]= DLY_VC1; config_reg_2 [5]= DLY_VC2;

config_reg_2 [6]= DLY_VC3; config_reg_2 [7]= DLY_VC4;

always @(posedge stb_L or negedge reset_L) begin

if (~ reset_L) config_reg_2 <= 8’d0;

else if (en_cr2) config_reg_2 <= ad_in;

end

// Mode decoder

always @(mode [3:0] or write) begin

en_cr0 = ((~ mode [3] & mode [2:0] == 3’d0) & write)? 1’b1 : 1’b0;

en_cr1 = ((~ mode [3] & mode [2:0] == 3’d1) & write)? 1’b1 : 1’b0;

en_cr2 = ((~ mode [3] & mode [2:0] == 3’d2) & write)? 1’b1 : 1’b0;

en_sr0 = ((~ mode [3] & mode [2:0] == 3’d4) & write)? 1’b1 : 1’b0;

en_sr1 = ((~ mode [3] & mode [2:0] == 3’d5) & write)? 1’b1 : 1’b0;

load_dac = ((mode [3] == 1’b1 | mode [2:0] == 6) & write)? 1’b1: 1’b0;

read_dac = ((~ mode [3] & mode [2:0] == 3’d6) & ~write)? 1’b1 : 1’b0;

drive_output_buffer = ((mode [2:0] == 3’d3 | mode [2:0] == 3’d7) & ~write) ? 1’b1:

1’b0;

end

reg [3:0] addr;

// MUX Logic for choosing address ad_out

always @(*) begin

case (mode [2:0])

0: ad_out = config_reg_0;

1: ad_out = config_reg_1;

2: ad_out = config_reg_2;

3: ad_out = {4’b0000 ,addr [3:0]};

4: ad_out = hit [7:0];

5: ad_out = hit [15:8];

6: ad_out = common_bus [7:0];

7: ad_out = {4’b0000 ,addr [3:0]};

endcase

end

// MUX Logic for channel address

reg [1:0] sel_addr;

always @(*) begin

case (sel_addr)

0: chan_addr = ad_in [7:4];

1: chan_addr = addr [3:0];

2: chan_addr = ad_reg_out [7:4];

3: chan_addr = 4’b0000;

endcase

end

// Generate sel_addr

always @(*) begin

sel_addr = 2’d0;

if ((mode [2:0] == 3’d3 | mode [2:0] == 3’d7) & write) sel_addr = 2’d0;

else if (((mode [2:0] == 3’d3) | (mode [2:0] == 3’d7)) & ~write) sel_addr = 2’d1;

else if (mode [2:0] == 3’d6) sel_addr = 2’d2;

end

// Instiantiate the Shadow register module created

reg [15:0] shadow_reg;

reg valid_addr;

wire sel_hit;

// reset_L is asynchronous reset signal

// force_reset is a synchronous signal

shadowreg sreg(.ad_in(ad_in),

.stb_L(stb_L),

65

.reset_L(reset_L),

.force_reset(force_reset),

.en_sr0(en_sr0),

.en_sr1(en_sr1),

.addr(addr),

.sel_hit(sel_hit),

.valid_addr(valid_addr),

.shadow_reg(shadow_reg)

);

// MUX Logic for choosing either hit register or shadow register

reg [15:0] encoder_in;

always @(*) begin

case (sel_hit)

0: encoder_in = shadow_reg;

1: encoder_in = hit;

endcase

end

// Generate sel_hit bit for choosing either hit register or shadow register

assign sel_hit = (mode [2:0] == 3’d3 & ~write)? 1’b0 : 1’b1;

// Priority Encoder Block

integer j;

always @(*) begin

if (| encoder_in) begin

for (j=15; j>=0 ; j=j-1) begin

if (encoder_in[j]) begin

addr = j;

valid_addr = 1’b1;

end

end

end

else begin

addr = 4’d0;

valid_addr = 1’b0;

end

end

// Channel Decoder

always @(*) begin

chan_sel = 16’d0;

if (mode [2:0] == 3’d3 || mode [2:0] == 3’d7) begin

for (j=0; j<16 ; j=j+1) begin

if (chan_addr == j) begin

chan_sel[j] = 1’b1;

end

end

end

else if (mode [3] == 1’b1) chan_sel = 16’hFFFF;

else if (mode [2:0] == 3’d6) begin

for (j=0; j<16 ; j=j+1) begin

if (chan_addr == j) begin

chan_sel[j] = 1’b1;

end

end

end

end

wire [3:0] dec_in;

assign dec_in = config_reg_2 [6:3];

// 4 to 16 Decoder

always @(*) begin

case(dec_in)

4’b0000: dec_out = 16’ b0000_0000_0000_0001;

4’b0001: dec_out = 16’ b0000_0000_0000_0010;

4’b0010: dec_out = 16’ b0000_0000_0000_0100;

66

4’b0011: dec_out = 16’ b0000_0000_0000_1000;

4’b0100: dec_out = 16’ b0000_0000_0001_0000;

4’b0101: dec_out = 16’ b0000_0000_0010_0000;

4’b0110: dec_out = 16’ b0000_0000_0100_0000;

4’b0111: dec_out = 16’ b0000_0000_1000_0000;

4’b1000: dec_out = 16’ b0000_0001_0000_0000;

4’b1001: dec_out = 16’ b0000_0010_0000_0000;

4’b1010: dec_out = 16’ b0000_0100_0000_0000;

4’b1011: dec_out = 16’ b0000_1000_0000_0000;

4’b1100: dec_out = 16’ b0001_0000_0000_0000;

4’b1101: dec_out = 16’ b0010_0000_0000_0000;

4’b1110: dec_out = 16’ b0100_0000_0000_0000;

4’b1111: dec_out = 16’ b1000_0000_0000_0000;

default: dec_out = 16’ b0000_0000_0000_0000;

endcase

end

// Need to know if any of the channel is hit , or_out gives this information

wire or_out_hit ,or_out_shadow_reg;

assign or_out_hit = |hit;

assign or_out_shadow_reg = |shadow_reg;

assign or_out = (sel_hit)? or_out_hit : or_out_shadow_reg;

endmodule

A.1.1 Verilog description of shadow register

module shadowreg(input [7:0] ad_in ,

input stb_L ,

input reset_L ,

input force_reset ,

input sel_hit ,

input valid_addr ,

input en_sr0 ,

input en_sr1 ,

input [3:0] addr ,

output reg [15:0] shadow_reg

);

genvar i ;

// reset_L is an asynchronous reset

// forece_reset causes a synchronous reset

wire [15:0] sync_reset;

// Create the synchronous reset signal

// COMBINATIONAL LOGIC

generate

for (i=0; i <=15; i=i+1) begin

assign sync_reset[i] = ((addr == i) & force_reset & ~sel_hit & valid_addr) ?

1’b1 : 1’b0;

end

endgenerate

// Implement lower and upper bytes of shadow register

generate

for (i=0; i<=15; i=i+1) begin

if (i <= 7) begin

always @(posedge stb_L or negedge reset_L) begin

if (~ reset_L) shadow_reg[i] <= 1’b0 ;

else if (sync_reset[i]) shadow_reg[i] <= 1’b0;

else if (en_sr0) shadow_reg[i] <= ad_in[i];

end

end

else if (i > 7 && i<=15) begin

always @(posedge stb_L or negedge reset_L) begin

67

if (~ reset_L) shadow_reg[i] <= 1’b0 ;

else if (sync_reset[i]) shadow_reg[i] <= 1’b0;

else if (en_sr1) shadow_reg[i] <= ad_in[i-8];

end

end

end

endgenerate

endmodule

A.2 Verilog description of the digital circuits in a signal channel

//

// This is a verilog description of the HINP channel logic

//

module Channeldigital(input reset_L ,

input force_reset ,

input cfd_out ,

input [7:0] ad_in ,

input stb_L ,

input take_event ,

input global_ena ,

input acq_all ,

input chan_sel ,

input drive_output_buffer ,

input common_stop ,

input vari_one_shot_L ,

input spl_chan ,

input qualified_cfd_narrow ,

input auto_reset_narrow ,

input analog_reset_async_set_narrow ,

input load_dac ,

input read_dac ,

output qualified_cfd ,

output analog_reset_async_set ,

output reg auto_reset ,

output reg dont_charge_cap_L ,

output charge_cap_L ,

output reg analog_reset ,

output [7:0] common_bus ,

output reg [7:0] dac_reg ,

output read_chan ,

output hit

);

wire din_L;

wire din;

LOGIC0 L0(.Q(din_L));

LOGIC1 L1(.Q(din));

// Modelling DAC register

always @(posedge stb_L or negedge reset_L) begin

if (~ reset_L) dac_reg <= 8’d0;

else if (chan_sel & load_dac) dac_reg <= ad_in;

end

// Modelling tri state bus for DAC registers

assign common_bus = ((read_dac & chan_sel)|(~ read_dac & spl_chan))? dac_reg : 8’dz;

// Need to qualify the cfd signals

assign qualified_cfd = ((cfd_out | acq_all) & (global_ena & dac_reg [6]));

// Modelling Auto Reset Pulse

wire gen_auto_reset;

assign gen_auto_reset = vari_one_shot_L & ~take_event;

always @(posedge gen_auto_reset or posedge qualified_cfd_narrow) begin

68

if (qualified_cfd_narrow) auto_reset <= 1’b0;

else if (gen_auto_reset) auto_reset <= din;

end

// Modeling Hit Register in Channel

reg hit_reg;

wire hit_regs_sync_reset;

wire hit_regs_async_reset;

// Need to implement reset signals for the hit registers

// Asynchronous reset should occur as part of auto -reset or since the channel

// is selected and the force_reset signal is being applied from the FPGA.

assign hit_regs_sync_reset = (chan_sel & force_reset) ? 1’b1 : 1’b0;

assign hit_regs_async_reset = (~ reset_L | auto_reset_narrow) ? 1’b1 : 1’b0;

// Need to implement the hit registers

// CLocked off posegde of the qualified cfd signal and are asynchronously reset

always @(posedge stb_L or posedge hit_regs_async_reset or posedge

qualified_cfd_narrow) begin

if (hit_regs_async_reset) hit_reg <= 1’b0;

else if (qualified_cfd_narrow) hit_reg <= 1’b1;

else if (hit_regs_sync_reset) hit_reg <= din_L;

end

assign hit = hit_reg;

// Modelling Analog Reset Pulse

assign analog_reset_async_set = ((chan_sel & force_reset)|gen_auto_reset) ? 1’b1 : 1’

b0;

always @(posedge qualified_cfd_narrow or posedge analog_reset_async_set_narrow or

negedge reset_L) begin

if (~ reset_L) analog_reset <= 1’b1;

else if (analog_reset_async_set_narrow) analog_reset <= 1’b1;

else if (qualified_cfd_narrow) analog_reset <= din_L;

end

// Modelling TVC digital logic

wire dig_reset;

assign dig_reset = (common_stop | ~reset_L | (force_reset & chan_sel)) ? 1’b1 : 1’b0;

always @(posedge qualified_cfd_narrow or posedge dig_reset) begin

if (dig_reset) dont_charge_cap_L <= 1’b0;

else if (qualified_cfd_narrow) dont_charge_cap_L <= din;

end

assign charge_cap_L = ~dont_charge_cap_L;

// Modelling Digital Logic for Peak Sampler

assign read_chan = (drive_output_buffer & chan_sel)? 1’b1 : 1’b0;

endmodule

A.3 Verilog description of HINP channels

//

// This is a verilog behavioral model of the 16 HINP channels

//

module HINPchannels(input [15:0] cfd_out ,

input [7:0] data ,

input stb_L ,

input reset_L ,

input force_reset ,

input electron_collection ,

input [15:0] chan_sel ,

input load_dac ,

input read_dac ,

input drive_output_buffer ,

input common_stop ,

input acq_all ,

input global_ena ,

69

input take_event ,

input [15:0] qualified_cfd_narrow ,

input [15:0] auto_reset_narrow ,

input [15:0] vari_one_shot_L ,

input [15:0] analog_reset_async_set_narrow ,

output reg [15:0] dont_charge_cap_L ,

output [15:0] charge_cap_L ,

output reg [15:0] analog_reset ,

output [15:0] analog_reset_async_set ,

output [15:0] auto_reset ,

output [15:0] qualified_cfd ,

output [7:0] common_bus ,

output [15:0] hit ,

output integer high_gain_shaper [15:0] ,

output integer low_gain_shaper [15:0] ,

output integer tvc [15:0]

);

// Need a genvar for the generate statements used

genvar i;

// Model the high_gain_shaper , low_gain_shaper and tvc outputs

// Send out an integer indicating the channel number (incremented by 1) and these

outputs should be high Z when not selected

generate

for (i=0;i<=15;i=i+1) begin

assign high_gain_shaper[i] = (chan_sel[i] & drive_output_buffer) ? i+1 : 1’bz;

assign low_gain_shaper[i] = (chan_sel[i] & drive_output_buffer) ? i+1 : 1’bz;

assign tvc[i] = (chan_sel[i] & drive_output_buffer) ? i+1 : 1’bz;

end

endgenerate

// These outputs all are reset to zero when the force_reset comes along

generate

for (i=0;i<=15;i=i+1) begin

assign high_gain_shaper[i] = (chan_sel[i] & force_reset) ? 1’b0 : 1’bz;

assign low_gain_shaper[i] = (chan_sel[i] & force_reset) ? 1’b0 : 1’bz;

assign tvc[i] = (chan_sel[i] & force_reset) ? 1’b0 : 1’bz;

end

endgenerate

// Need to implement the auto_reset signal

// When the cfd comes , we need to wait a while and if take_event doesn ’t some along

// within some specified time period then we should issue a auto_reset signal

// Model Digital Logic for 16 channels

reg [7:0] dac_regs [15:0];

wire [15:0] hit_regs_async_reset;

wire [15:0] hit_regs_sync_reset;

wire [15:0] hit;

wire [15:0] read_chan;

wire [15:0] spl_chan;

generate

for (i=0; i<=15 ; i=i+1) begin

assign spl_chan[i] = (i==0) ? 1’b1 : 1’b0;

end

endgenerate

generate

for (i=0; i<=15 ; i=i+1) begin

// Channel Digital Logic

Channeldigital chandigital(.reset_L(reset_L),

.force_reset(force_reset),

.cfd_out(cfd_out[i]),

.stb_L(stb_L),

.load_dac(load_dac),

.ad_in(data),

.read_dac(read_dac),

70

.global_ena(global_ena),

.acq_all(acq_all),

.take_event(take_event),

.chan_sel(chan_sel[i]),

.spl_chan(spl_chan[i]),

.drive_output_buffer(drive_output_buffer),

.common_stop(common_stop),

.vari_one_shot_L(vari_one_shot_L[i]),

.qualified_cfd(qualified_cfd[i]),

.qualified_cfd_narrow(qualified_cfd_narrow[i]),

.auto_reset_narrow(auto_reset_narrow[i]),

.analog_reset_async_set_narrow(analog_reset_async_set_narrow[i

]),

.analog_reset_async_set(analog_reset_async_set[i]),

.auto_reset(auto_reset[i]),

.dont_charge_cap_L(dont_charge_cap_L[i]),

.charge_cap_L(charge_cap_L[i]),

.analog_reset(analog_reset[i]),

.dac_reg(dac_regs[i]),

.common_bus(common_bus),

.read_chan(read_chan[i]),

.hit(hit[i])

);

end

endgenerate

wire [15:0] local_ena;

generate

for (i=0; i<=15 ; i=i+1) begin

assign local_ena[i] = dac_regs[i][6];

end

endgenerate

endmodule

71

APPENDIX B

System Verilog Test Fixture for Verification

B.1 SystemVerilog definition of global parameters

/* Characteristics of Pulse */

localparam PERIOD = 100ns;

localparam LENGTH_OF_RESET = 100ns;

localparam LENGTH_OF_FORCE_RESET = 100ns;

localparam DURATION_OF_COMMON_STOP = 50ns;

localparam WIDTH_OF_CFD_NARROW_PULSE = 50ns;

localparam SHORT_DELAY = 50ns;

localparam MEDIUM_DELAY = 1us;

localparam LONG_DELAY = 10us;

localparam DURATION_OF_READOUT = 1us;

localparam BITS = 8;

localparam CHAN = 16;

/* Config Registers Address and Mode Parameters */

localparam CR0 = 8’h0;

localparam CR1 = 8’h1;

localparam CR2 = 8’h2;

/* DAC Registers Address and Mode Parameters */

localparam DAC0 = 8’h06;

localparam DAC1 = 8’h16;

localparam DAC2 = 8’h26;

localparam DAC3 = 8’h36;

localparam DAC4 = 8’h46;

localparam DAC5 = 8’h56;

localparam DAC6 = 8’h66;

localparam DAC7 = 8’h76;

localparam DAC8 = 8’h86;

localparam DAC9 = 8’h96;

localparam DAC10 = 8’hA6;

localparam DAC11 = 8’hB6;

localparam DAC12 = 8’hC6;

localparam DAC13 = 8’hD6;

localparam DAC14 = 8’hE6;

localparam DAC15 = 8’hF6;

localparam DAC_ALL = 8’hF8;

/* Hit Channel Parameters */

localparam SEED = 16;

localparam RANDOM = 1;

localparam ALL = 2;

localparam NONE = 3;

localparam EVENS = 4;

localparam ODDS = 5;

localparam ACQ_ALL = 6;

/* Shadow Register Parameters */

localparam SR0 = 8’h04;

localparam SR1 = 8’h05;

localparam SHADOW_REG = 8’h03;

localparam HIT_REG = 8’h07;

localparam HR0 = 8’h04;

localparam HR1 = 8’h05;

localparam FPGA_ADDR = 8’hE;

72

localparam WAIT_FOR_TAKE_EVENT = 2us;

localparam AUTO_RESET_WIDTH = 20us;

localparam NO_READOUT = 0;

localparam READOUT = 1;

B.2 SystemVerilog tasks

/*

################################

Initialization

################################

*/

task init;

stb = 1’b0;

fpga_out = 8’b0;

write = 1’b0;

force_reset = 1’b0;

cfd_out = 16’d0;

reset_L = 1’b1;

electron_collection = 1’b0;

common_stop = 1’b0;

acq_all = 1’b0;

global_ena = 1’b1;

take_event = 1’b0;

FPGA_reg = 16’d0;

master_rst;

endtask

/*

################################

Apply strobe signal

################################

*/

task apply_strobe;

stb = 1’b1;

#(PERIOD /2.0)

stb = 1’b0;

#(PERIOD /2.0);

endtask

/*

################################

Master Reset

################################

*/

task master_rst;

reset_L = 1’b0;

#(LENGTH_OF_RESET)

reset_L = 1’b1;

endtask

/*

################################

Apply common stop signal

################################

*/

task apply_common_stop;

common_stop = 1’b1;

#(DURATION_OF_COMMON_STOP)

common_stop = 1’b0;

endtask

/*

################################

73

Holes collection

################################

*/

task collect_holes;

electron_collection = 1’b1;

endtask

/*

################################

Electrons collection

################################

*/

task collect_electrons;

electron_collection = 1’b0;

endtask

/*

################################

Apply Take Event signal

################################

*/

task take_event_high;

take_event = 1’b1;

endtask

task take_event_low;

take_event = 1’b0;

endtask

/*

################################

Apply acquistion all signal

################################

*/

task apply_acq_all;

acq_all = 1’b1;

#(SHORT_DELAY)

acq_all = 1’b0;

endtask

/*

################################

Apply global enable signal

################################

*/

task global_ena_high;

global_ena = 1’b1;

endtask

task global_ena_low;

global_ena = 1’b0;

endtask

/*

################################

Get strobe low

################################

*/

task strobe_low;

stb = 1’b0;

endtask

/*

################################

Get strobe high

################################

*/

task strobe_high;

stb = 1’b1;

endtask

74

/*

##

Load configuration and DAC registers

##

*/

task config_register(input [7:0] reg_value , input [7:0] data);

global_ena_low;

#(PERIOD / 4.0);

strobe_low;

#(PERIOD / 4.0);

fpga_out = reg_value;

write = 1’b1;

#(PERIOD / 4.0);

strobe_high;

#(PERIOD / 4.0);

fpga_out = data;

#(PERIOD / 4.0);

strobe_low;

#(PERIOD / 4.0);

write = 1’b0;

global_ena_high;

endtask

/*

######################################

Read configuration and DAC registers

######################################

*/

task read_register(input [7:0] reg_value);

global_ena_low;

write = 1’b1;

#(PERIOD / 4.0);

strobe_low;

#(PERIOD / 4.0);

fpga_out = reg_value;

#(PERIOD / 4.0);

strobe_high;

#(PERIOD / 4.0);

write = 1’b0;

#(PERIOD / 4.0);

strobe_low;

#(PERIOD / 4.0);

write = 1’b1;

global_ena_high;

endtask

/*

######################################

Choose contents of shadow register

######################################

*/

task sel_shadowreg;

strobe_low;

#(PERIOD / 4.0);

fpga_out = SHADOW_REG;

#(PERIOD / 4.0);

strobe_high;

#(PERIOD / 2.0);

strobe_low;

endtask

/*

######################################

Choose contents of hit register

######################################

75

*/

task sel_hitreg;

strobe_low;

#(PERIOD / 4.0);

fpga_out = HIT_REG;

#(PERIOD / 4.0);

strobe_high;

#(PERIOD / 2.0);

strobe_low;

endtask

/*

######################################

select external address from FPGA

######################################

*/

task sel_ext_addr(input [7:0] data);

strobe_low;

#(PERIOD / 4.0);

fpga_out = data;

write = 1’b1;

#(PERIOD / 4.0);

strobe_high;

#(PERIOD / 2.0);

strobe_low;

endtask

/*

#########################

Apply force reset signal

#########################

*/

task force_reset_high;

force_reset = 1’b1;

endtask

task force_reset_low;

force_reset = 1’b0;

endtask

/*

################################

Load Shadow register

################################

*/

task load_shadow_reg(input [7:0] byte_loc , input [7:0] data);

global_ena_low;

#(PERIOD / 4.0);

strobe_low ;

#(PERIOD / 4.0) ;

fpga_out = byte_loc ;

write = 1’b1 ;

#(PERIOD / 4.0) ;

strobe_high;

#(PERIOD / 4.0) ;

fpga_out = data ;

#(PERIOD / 4.0) ;

strobe_low ;

#(PERIOD / 4.0) ;

write = 1’b0 ;

global_ena_high;

endtask

/*

##

Clear particular channel bit in shadow register

##

76

*/

task clr_shadow_reg_bit;

strobe_low ;

#(PERIOD / 4.0) ;

fpga_out = SHADOW_REG;

#(PERIOD / 4.0) ;

strobe_high ;

#(PERIOD / 4.0) ;

force_reset_high;

#(PERIOD / 4.0) ;

strobe_low ;

#(PERIOD / 4.0) ;

force_reset_low;

endtask

/*

######################################

Generate random value for cfd signals

######################################

*/

task random_cfd(integer seed);

cfd_out = $random ();

endtask

/*

######################################

Hit channels

######################################

*/

task hit_channels(input integer hit_type);

case (hit_type)

RANDOM: random_cfd(SEED);

ALL: cfd_out = 16’hFFFF; // ALL ONE ’s

NONE: cfd_out = 16’h0000; // ALL ZERO ’s

EVENS: cfd_out = 16’h5555; // EVEN ’s

ODDS: cfd_out = 16’hAAAA; // ODD ’s

endcase

#(WIDTH_OF_CFD_NARROW_PULSE);

cfd_out = 16’h0000;

endtask

/*

######################################

Read Hit register Channels

######################################

*/

task read_hit_reg;

strobe_low;

#(PERIOD / 2.0);

fpga_out = HIT_REG;

#(PERIOD / 2.0);

write = 1’b1 ;

#(PERIOD / 4.0);

strobe_high;

#(PERIOD / 4.0);

write = 1’b0;

endtask

/*

######################################

Read Shadow register Channels

######################################

*/

task read_shadow_reg;

strobe_low;

#(PERIOD / 4.0);

77

fpga_out = SHADOW_REG;

write = 1’b1 ;

#(PERIOD / 4.0);

strobe_high;

#(PERIOD / 4.0);

write = 1’b0 ;

endtask

/*

######################################

Readout one channel

######################################

*/

task one_channel_readout;

strobe_high;

#(PERIOD / 4.0);

force_reset_high;

#(PERIOD / 4.0);

strobe_low;

#(PERIOD / 4.0);

force_reset_low;

#(PERIOD / 4.0);

endtask

/*

######################################

Auto readout hit register

######################################

*/

task auto_readout_hit_reg(input integer read);

global_ena_low;

#(SHORT_DELAY);

read_hit_reg;

case(read)

READOUT: begin

take_event_high;

while(or_out) begin

read_hit_reg;

#(SHORT_DELAY);

one_channel_readout;

end

end

NO_READOUT: #(LONG_DELAY);

endcase

#(SHORT_DELAY);

take_event_low;

global_ena_high;

endtask

/*

######################################

Auto readout shadow register

######################################

*/

task auto_readout_shadow_reg;

global_ena_low;

#(SHORT_DELAY);

read_shadow_reg;

#(SHORT_DELAY);

take_event_high;

while(or_out) begin

read_shadow_reg;

#(SHORT_DELAY);

one_channel_readout;

end

78

#(SHORT_DELAY);

take_event_low;

global_ena_high;

endtask

/*

######################################

We need to get the channels hit from the hit register and

modify them to see some the additional channels and load them to the shadow register

######################################

*/

task read_hit_reg_and_modify_adjacent_channels;

int i;

for (i=0; i<=15; i=i+1) begin

if (i==0) begin

if (hit[i]|hit[i+1]) FPGA_reg[i] <= 1’b1;

else FPGA_reg[i] <= 1’b0;

end

else if (i==15) begin

if (hit[i]|hit[i-1]) FPGA_reg[i] <= 1’b1;

else FPGA_reg[i] <= 1’b0;

end

else begin

if (hit[i]|hit[i+1]| hit[i-1]) FPGA_reg[i] <= 1’b1;

else FPGA_reg[i] <= 1’b0;

end

end

endtask

B.3 SystemVerilog test bench for verification

// This is Verilog testbench for digital logic in HINP5

‘include "localparam.vh"

‘timescale 1ns/100ps

module HINPdigital_tb;

// Inputs

reg stb;

reg write;

reg reset_L;

reg force_reset;

reg [15:0] cfd_out;

reg electron_collection;

reg common_stop;

reg acq_all;

reg global_ena;

reg take_event;

reg stb_L;

wire [15:0] qualified_cfd_narrow;

wire [15:0] auto_reset_narrow;

wire [15:0] analog_reset_async_set_narrow;

// Outputs

wire [15:0] chan_sel;

wire or_out;

wire drive_output_buffer;

wire load_dac;

wire read_dac;

wire [15:0] hit;

integer high_gain_shaper [15:0];

integer low_gain_shaper [15:0] ;

integer tvc [15:0];

tri [7:0] common_bus;

79

wire [15:0] analog_reset_async_set;

wire [15:0] dont_charge_cap_L;

wire [15:0] charge_cap_L;

wire [15:0] analog_reset;

wire [15:0] qualified_cfd;

wire [15:0] auto_reset;

wire [7:0] config_reg_0;

wire [7:0] config_reg_1;

wire [7:0] config_reg_2;

wire [15:0] dec_out;

// Wires

wire [7:0] ad_in;

wire [7:0] ad_out;

wire [7:0] fpga_in;

reg [7:0] fpga_out;

reg [15:0] FPGA_reg;

tri [7:0] ad;

‘include "HINPdigital_tasks.sv"

HINPdigital dut(. ad_in(ad_in),

.stb(stb),

.reset_L(reset_L),

.write(write),

.hit(hit),

.force_reset(force_reset),

.stb_L(stb_L),

.chan_sel(chan_sel),

.ad_out(ad_out),

.load_dac(load_dac),

.read_dac(read_dac),

.common_bus(common_bus),

.drive_output_buffer(drive_output_buffer),

.or_out(or_out),

.dec_out(dec_out),

.config_reg_0(config_reg_0),

.config_reg_1(config_reg_1),

.config_reg_2(config_reg_2)

);

// Inaddition to strobe i need active low version

assign stb_L = ~stb;

// Model bidirectional pad of HINP chip

assign ad = write? 8’bz : ad_out;

assign ad_in = ad;

// Model bidirectional pad of FPGA

assign ad = write? fpga_out : 8’bz;

assign fpga_in = ad;

genvar i;

// Narrow Pulse Generator for qualified_cfd_pulse

generate

for (i=0; i<=15 ; i=i+1) begin

narrow_pulse_generator NPG0(. pulse_in(qualified_cfd[i]),

.narrow_pulse_out(qualified_cfd_narrow[i])

);

end

endgenerate

// Narrow Pulse Generator for auto_reset_pulse

generate

for (i=0; i<=15 ; i=i+1) begin

narrow_pulse_generator NPG1(. pulse_in(auto_reset[i]),

.narrow_pulse_out(auto_reset_narrow[i])

);

end

endgenerate

80

// Modelling One Shot

reg [15:0] vari_one_shot_L;

generate

for (i=0; i<=15 ; i=i+1) begin

always @(posedge qualified_cfd_narrow[i] or negedge reset_L) begin

if (~ reset_L) vari_one_shot_L[i] <= 1’b1;

else if (qualified_cfd_narrow[i]) begin

vari_one_shot_L[i] <= 1’b0;

#(WAIT_FOR_TAKE_EVENT);

vari_one_shot_L[i] <= 1’b1;

end

end

end

endgenerate

// Narrow Pulse Generator

generate

for (i=0; i<=15 ; i=i+1) begin

narrow_pulse_generator NPG2(. pulse_in(analog_reset_async_set[i]),

.narrow_pulse_out(analog_reset_async_set_narrow[i])

);

end

endgenerate

HINPchannels uut(.cfd_out(cfd_out),

.data(ad_in),

.stb_L(stb_L),

.reset_L(reset_L),

.force_reset(force_reset),

.electron_collection(electron_collection),

.chan_sel(chan_sel),

.load_dac(load_dac),

.read_dac(read_dac),

.drive_output_buffer(drive_output_buffer),

.common_stop(common_stop),

.acq_all(acq_all),

.global_ena(global_ena),

.take_event(take_event),

.vari_one_shot_L(vari_one_shot_L),

.qualified_cfd_narrow(qualified_cfd_narrow),

.auto_reset_narrow(auto_reset_narrow),

.analog_reset_async_set_narrow(analog_reset_async_set_narrow),

.dont_charge_cap_L(dont_charge_cap_L),

.charge_cap_L(charge_cap_L),

.analog_reset(analog_reset),

.analog_reset_async_set(analog_reset_async_set),

.auto_reset(auto_reset),

.qualified_cfd(qualified_cfd),

.hit(hit),

.common_bus(common_bus),

.high_gain_shaper(high_gain_shaper),

.low_gain_shaper(low_gain_shaper),

.tvc(tvc)

);

initial begin

/* Initialize the Chip */

init;

#(5us);

/* Master reset for some length of time */

#(SHORT_DELAY) master_rst;

/* Load config registers with data */

#(MEDIUM_DELAY) config_register(CR0 , 8’hFC);

#(MEDIUM_DELAY) config_register(CR1 , 8’hFF);

#(MEDIUM_DELAY) config_register(CR2 , 8’hF7);

81

/* Read config registers */

#(MEDIUM_DELAY) read_register(CR0);

#(MEDIUM_DELAY) read_register(CR1);

#(MEDIUM_DELAY) read_register(CR2);

/* Load dac registers with data */

#(MEDIUM_DELAY) config_register(DAC0 , 8’hEC);

#(MEDIUM_DELAY) config_register(DAC1 , 8’hEF);

#(MEDIUM_DELAY) config_register(DAC2 , 8’hFF);

#(MEDIUM_DELAY) config_register(DAC3 , 8’hFC);

#(MEDIUM_DELAY) config_register(DAC4 , 8’hEF);

#(MEDIUM_DELAY) config_register(DAC5 , 8’hFF);

#(MEDIUM_DELAY) config_register(DAC6 , 8’hFC);

#(MEDIUM_DELAY) config_register(DAC7 , 8’hEF);

#(MEDIUM_DELAY) config_register(DAC8 , 8’hFF);

#(MEDIUM_DELAY) config_register(DAC9 , 8’hFC);

#(MEDIUM_DELAY) config_register(DAC10 , 8’hEF);

#(MEDIUM_DELAY) config_register(DAC11 , 8’hFF);

#(MEDIUM_DELAY) config_register(DAC12 , 8’hFC);

#(MEDIUM_DELAY) config_register(DAC13 , 8’hEF);

#(MEDIUM_DELAY) config_register(DAC14 , 8’hFF);

#(MEDIUM_DELAY) config_register(DAC15 , 8’hFC);

/* Read dac registers */

#(MEDIUM_DELAY) read_register(DAC0);

#(MEDIUM_DELAY) read_register(DAC1);

#(MEDIUM_DELAY) read_register(DAC2);

#(MEDIUM_DELAY) read_register(DAC3);

#(MEDIUM_DELAY) read_register(DAC4);

#(MEDIUM_DELAY) read_register(DAC5);

#(MEDIUM_DELAY) read_register(DAC6);

#(MEDIUM_DELAY) read_register(DAC7);

#(MEDIUM_DELAY) read_register(DAC8);

#(MEDIUM_DELAY) read_register(DAC9);

#(MEDIUM_DELAY) read_register(DAC10);

#(MEDIUM_DELAY) read_register(DAC11);

#(MEDIUM_DELAY) read_register(DAC12);

#(MEDIUM_DELAY) read_register(DAC13);

#(MEDIUM_DELAY) read_register(DAC14);

#(MEDIUM_DELAY) read_register(DAC15);

/* Load all dac registers */

#(MEDIUM_DELAY) config_register(DAC_ALL , 8’hCC);

/* Hit Channels with random values */

#(MEDIUM_DELAY) hit_channels(RANDOM);

#(LONG_DELAY) hit_channels(ALL);

#(LONG_DELAY) hit_channels(NONE);

#(LONG_DELAY) hit_channels(ODDS);

#(LONG_DELAY) hit_channels(EVENS);

// No Readout

#(MEDIUM_DELAY) auto_readout_hit_reg(NO_READOUT);

// Acquisition of all channels

#(LONG_DELAY) apply_acq_all;

// Readout out of hit channels from hit register

#(MEDIUM_DELAY) auto_readout_hit_reg(READOUT);

// Hit ODD channels

#(LONG_DELAY) hit_channels(ODDS);

// Readout out of hit channels from hit register

#(MEDIUM_DELAY) auto_readout_hit_reg(READOUT);

// Hit RANDOM channels

#(LONG_DELAY) hit_channels(RANDOM);

// Read hit register to modify the adjacent channels

#(MEDIUM_DELAY) read_hit_reg_and_modify_adjacent_channels;

// Load shadow registers with changed hit registers values

#(SHORT_DELAY) load_shadow_reg(SR0 , FPGA_reg [7:0]);

82

#(MEDIUM_DELAY) load_shadow_reg(SR1 , FPGA_reg [15:8]);

// Auto Readout out of hit channels from hit register

#(MEDIUM_DELAY) auto_readout_shadow_reg;

#(LONG_DELAY)

$finish;

end

‘include "HINPdigital_vcd.v"

endmodule

83

APPENDIX C

SDC Constraints

C.1 HINPdigital SDC file

#

SDC file for HINP Digital Logic design

#

#

Period and fanout information in global.tcl file

#

set MAX_FAN_OUT 50

set CLOCK_PERIOD 100

set_max_fanout ${MAX_FAN_OUT} [current_design]

Create the transmitter clock

create_clock -name stb \

-period ${CLOCK_PERIOD} \

-waveform [list [expr ${CLOCK_PERIOD} / 2.0] 0] \

[get_ports stb]

Creating strobe invert from strobe pulse

create_clock -name stb_L \

-period ${CLOCK_PERIOD} \

-waveform [list 0 [expr ${CLOCK_PERIOD} / 2.0]] \

[get_ports stb_L]

#

Set input and output delays

#

#set_input_delay 5 -clock stb { }

#set_input_delay 5 -clock stb_L { }

#set_output_delay 5 -clock stb { }

#set_output_delay 5 -clock stb_L { }

set_false_path -from [get_ports reset_L]

set_dont_touch "/designs/struct/nets.din"

set_dont_touch "/designs/struct/nets.din_L"

set_dont_touch [find -net din]

set_dont_touch [find -net din_L]

C.2 Channeldigital SDC file

#

SDC file for Channel Digital Logic design

#

#

Period and fanout information in global.tcl file

#

set MAX_FAN_OUT 25

set CLOCK_PERIOD 100

set CLK "stb_L"

set_max_fanout ${MAX_FAN_OUT} [current_design]

Create the transmitter clock

create_clock -name $CLK \

-period ${CLOCK_PERIOD} \

-waveform [list [expr ${CLOCK_PERIOD} / 2.0] 0] \

84

[get_ports $CLK]

Set input and output delays

#

set_input_delay 5 -clock $CLK [remove_from_collection [all_inputs] $CLK]

set_output_delay 5 -clock $CLK [all_outputs]

set_dont_touch "/designs/struct/nets.din"

set_dont_touch [find -net din]

set_dont_touch [find -net din_L]

set_false_path -from [get_ports reset_L]

85

APPENDIX D

Environment Files Used in Design

D.1 Env file for a HINP digital design used in HINP Chip in TCL

#

Env file for a HINP digital design used in HINP Chip

#

set HOME $env(HOME)

set PHOME $env(PHOME) ; # Get the project home directory

Specify simulaton mode !!!!!!!

set SIM_MODE rtl ; # Simulation mode: rtl , syn , or pnr

Specify basename

set BASENAME HINPdigital ; # Set the root cell

Controls what rc_synthesis script does

set RC_ELAB_ONLY false ; # Stop after elaborating

set RC_LOAD_DSN false ; # Only want to load a design

set ENC_LOAD_DSN false ; # Only want to load a design

Let the place and route tool know which modules have been placed and routed

set MODULE_LIST ""

#

Source the file containing the standard options

we would like to employ

#

source $env(EDI_TCL_DIR)/defaults.tcl

Want to overwrite SDC_DIR

set SDC_DIR ${SRC}/ $BASENAME

Point to key source directories

set DSN ${SRC}/ $BASENAME

set TB ${SRC}/ $BASENAME

#

These files are used for RTL simulations (sim rtl)

RTL simulations use RTL_VLOG_FILES and RTL_VHDL_FILES lists !!!!

Use " " so that variables get assigned values

#

set RTL_VLOG_FILES "\

$DSN/$BASENAME.v \

$DSN/shadowreg.v \

$DSN/HINPchannels.v \

$DSN/DACdigital.v \

$DSN/Channeldigital.v \

$DSN/narrow_pulse_generator.v \

"

These files are used by the synthesis tool

set NET $PHOME/syn_dir/netlists

set SYN_VLOG_FILES "\

$DSN/$BASENAME.v \

$DSN/shadowreg.v \

$DSN/DACdigital.v \

$DSN/Channeldigital.v \

"

Point to the testbench files to be used

set RTL_TB_FILE ${TB}/${BASENAME}_tb.sv

set SYN_TB_FILE ${TB}/${BASENAME}_syn_tb.sv

86

set PNR_TB_FILE ${TB}/${BASENAME}_pnr_tb.sv

#

Choreograph RTL compiler flow

#

set RC_TO_DO_LIST {\

${TCL_DIR }/rc/rc_synthesis.tcl \

}

Choreograph encounter flow

enc_hitkit.tcl performs place and route

edi2ic converts gdsii file to OA lib

set ENC_TO_DO_LIST {\

$TCL_DIR/enc/enc_hitkit.tcl \

}

&&&

Floorplanning

&&&

Provide X and Y dimensions of the core

set CORE_X 1000

set CORE_Y 2000

Set the aspect ratio for the layout

A values less than 1.0 means wide and not so high!

set ASPECT 0.5

Establish a boundary outside of the core area

set CORE_TO_BOUND 20

Utilization

set UTILIZATION 0.5

We need to create a vcd file so that we can

get pwl descriptions of these signals

set VCD_SIGNALS "\

ad_in \[7:0\] \

write \

stb \

reset_L \

hit \[15:0\] \

stb_L \

common_bus \[7:0\] \

force_reset \

"

Pin assignments

set N_PINS "[expandBus {hit [15:0]}] stb_L stb force_reset write read_dac"

set S_PINS "[expandBus {chan_sel [15:0]}] reset_L load_dac or_out

drive_output_buffer"

set E_PINS "[expandBus {ad_in [7:0]}] [expandBus {ad_out [7:0]}]"

set W_PINS "[expandBus {common_bus [7:0]}]"

Spacing in microns between the pins

set N_SPACING 15

set S_SPACING 15

set E_SPACING 10

set W_SPACING 10

Row Spacing (in microns)

Row Type (1 = every row ... 2 = every other row)

#set FP_ROW_SPACING 15

#set FP_ROW_TYPE 2

set ROUTER_TO_USE nano

Metal layer that should be used

set N_LAYER 2

set S_LAYER 2

set E_LAYER 3

set W_LAYER 3

&&

Power planning

&&

87

For the add power ring command

Width of the metal as well as the separation between gnd and vdd rings

set CORE_RING_SPACING 1

set CORE_RING_WIDTH 3

set CORE_RING_OFFSET 1

Desired metal layer for the power rings

set PWR_HORIZ_MET metal1

set PWR_VERT_MET metal2

Power stripes

set STRIPE_WIDTH 5

set STRIPE_SPACE 300

set STRIPE_LAYER metal2

Name of OA lib we want to export to

set MY_OA_LIB "ediLib"

##

We need to do something special with the ncvlog opts

since we don’t have an include directory

set INC_DIR $DSN

set NCVLOG_OPTS "-cdslib ${CDS_LIB} \

-hdlvar ${HDL_VAR} \

-errormax ${ERR_MAX} \

-update \

-linedebug \

-sv \

-status \

-incdir ${INC_DIR}"

D.2 Env file for a Channel digital design used in HINP Chip in TCL

#

Env file for a Channel digital design used in HINP Chip

#

set HOME $env(HOME)

set PHOME $env(PHOME) ; # Get the project home directory

Specify simulaton mode !!!!!!!

set SIM_MODE rtl ; # Simulation mode: rtl , syn , or pnr

Specify basename

set BASENAME Channeldigital ; # Set the root cell

Controls what rc_synthesis script does

set RC_ELAB_ONLY false ; # Stop after elaborating

set RC_LOAD_DSN false ; # Only want to load a design

set ENC_LOAD_DSN false ; # Only want to load a design

Let the place and route tool know which modules have been placed and routed

set MODULE_LIST ""

#

Source the file containing the standard options

we would like to employ

#

source $env(EDI_TCL_DIR)/defaults.tcl

Want to overwrite SDC_DIR

set SDC_DIR ${SRC}/ $BASENAME

Point to key source directories

set DSN ${SRC}/ $BASENAME

set TB ${SRC}/ $BASENAME

#

These files are used for RTL simulations (sim rtl)

RTL simulations use RTL_VLOG_FILES and RTL_VHDL_FILES lists !!!!

Use " " so that variables get assigned values

#

88

set RTL_VLOG_FILES "\

$DSN/$BASENAME.v \

$DSN/narrow_pulse_generator.v \

"

These files are used by the synthesis tool

set NET $PHOME/syn_dir/netlists

set SYN_VLOG_FILES "\

$DSN/$BASENAME.v \

"

Point to the testbench files to be used

set RTL_TB_FILE ${TB}/${BASENAME}_tb.sv

set SYN_TB_FILE ${TB}/${BASENAME}_syn_tb.sv

set PNR_TB_FILE ${TB}/${BASENAME}_pnr_tb.sv

#

Choreograph RTL compiler flow

#

set RC_TO_DO_LIST {\

${TCL_DIR }/rc/rc_synthesis.tcl \

}

Choreograph encounter flow

enc_hitkit.tcl performs place and route

edi2ic converts gdsii file to OA lib

set ENC_TO_DO_LIST {\

$TCL_DIR/enc/enc_hitkit.tcl \

}

&&&

Floorplanning

&&&

Provide X and Y dimensions of the core

set CORE_X 1000

set CORE_Y 2000

Set the aspect ratio for the layout

A values less than 1.0 means wide and not so high!

set ASPECT 0.6

Establish a boundary outside of the core area

set CORE_TO_BOUND 20

Utilization

set UTILIZATION 0.6

set VCD_SIGNALS "\

ad_in \[7:0\] \

reset_L \

stb_L \

force_reset \

cfd_out \

take_event \

global_ena \

acq_all \

chan_sel \

drive_output_buffer \

common_stop \

vari_one_shot_L \

spl_chan \

load_dac \

read_dac \

"

Pin assignments

set N_PINS "[expandBus {ad_in [7:0]}] stb_L reset_L force_reset global_ena

drive_output_buffer acq_all hit chan_sel take_event common_stop"

set S_PINS "[expandBus {dac_reg [7:0]}] load_dac read_dac [expandBus {common_bus

[7:0]}]"

set E_PINS "charge_cap_L dont_charge_cap_L analog_reset"

set W_PINS "read_chan vari_one_shot_L cfd_out qualified_cfd qualified_cfd_narrow

89

auto_reset auto_reset_narrow analog_reset_async_set

analog_reset_async_set_narrow"

Spacing in microns between the pins

set N_SPACING 8

set S_SPACING 8

set E_SPACING 10

set W_SPACING 10

Row Spacing (in microns)

Row Type (1 = every row ... 2 = every other row)

#set FP_ROW_SPACING 15

#set FP_ROW_TYPE 2

set ROUTER_TO_USE nano

Metal layer that should be used

set N_LAYER 2

set S_LAYER 2

set E_LAYER 3

set W_LAYER 3

&&

Power planning

&&

For the add power ring command

Width of the metal as well as the separation between gnd and vdd rings

set CORE_RING_SPACING 1

set CORE_RING_WIDTH 3

set CORE_RING_OFFSET 1

Desired metal layer for the power rings

set PWR_HORIZ_MET metal1

set PWR_VERT_MET metal2

Power stripes

set STRIPE_WIDTH 5

set STRIPE_SPACE 300

set STRIPE_LAYER metal2

Name of OA lib we want to export to

set MY_OA_LIB "ediLib"

##

We need to do something special with the ncvlog opts

since we don’t have an include directory

set INC_DIR $DSN

set NCVLOG_OPTS "-cdslib ${CDS_LIB} \

-hdlvar ${HDL_VAR} \

-errormax ${ERR_MAX} \

-update \

-linedebug \

-sv \

-status \

-incdir $INC_DIR"

90

APPENDIX E

TCL Scripts for EDI

E.1 TCL Script to run Simulation

#!/usr/bin/env wish

#

Script to help run simulations

#

Filename: sim.tcl

Author: Dr. George Engel

Date: 6 August 2012

Modified: 14 May 2013

#

#

Source env.tcl to define global values which we need

#

source $env(PHOME)/env.tcl

#

Need the Tk package

package require Tk

#

Create a text window for logging results

#

set log ".simulation_log"

CreateTextWindow $log

#

Make sure we have valid arguments

#

if {$argc != 0} {

puts "sim script requires NO arguments !!!"

exit

}

set startTime [clock seconds]

set tmpVar [clock format ${startTime }]

print $log "\nStarting sim.tcl ... (${tmpVar })"

#

Remove worklib ... start anew each time

#

#siue::print $log "Removing worklib and re -making worklib directory ."

file delete -force $PHOME/worklib

file mkdir $PHOME/worklib

#

Compile the RTL code

List of files i.e VLOG_FILES (RTL ANND SYN) should be defined in env.tcl

SIM_MODE should be set to either rtl , syn , or pnr

#

switch ${SIM_MODE} {

rtl {

print $log "\nSimulating RTL description of $BASENAME" {color_blue}

CompileStdCellLib "${STD_CELLS} ${UDP}"

CompileVerilogRTL ${RTL_VLOG_FILES}

CompileVhdlRTL ${RTL_VHDL_FILES}

CompileTestbench ${RTL_TB_FILE}

}

91

syn {

print $log "\nSimulating synthesized netlist for $BASENAME" {color_blue}

set syn_file ${SYN_DIR }/ netlists/${BASENAME}_syn.v

CompileStdCellLib "${STD_CELLS} ${UDP}"

CompileVerilogNetlist ${syn_file}

CompileTestbench ${SYN_TB_FILE}

}

pnr {

print $log "\nSimulating place and routed netlist for $BASENAME" {color_blue}

set pnr_file ${PNR_DIR }/ netlists/${BASENAME}_pnr.v

CompileStdCellLib "${STD_CELLS} ${UDP}"

CompileVerilogNetlist ${pnr_file}

CompileTestbench ${PNR_TB_FILE}

}

default {

puts "Exiting ... ${SIM_MODE} does not exist!"

}

}

print $log "\nElaborating and simulating $BASENAME ..."

#

Save the log window to a file

#

set timestamp [clock format [clock seconds] -format "%Y-%m-%dT%H:%M:%S"]

set fileName "$PHOME/logfiles/sim_${timestamp}"

SaveTextToFile $log $fileName

#

Elaborate the design

The design ’s basename (top level) should be defined in env.tcl

#

Elaborate ${BASENAME}

#

Simulate the design

#

Simulate ${BASENAME}

E.2 TCL Script to run Synthesis

#!/bin/tcsh

cd $PHOME/syn_dir/logfiles

if ("$MODE_IS_64BIT" == "TRUE") then

echo "RTL Compiler being called in 64-bit mode"

rc -64 -files $PHOME/tcl_dir/rc/rc.tcl

else

echo "RTL Compiler being called in 32-bit mode"

rc -32 -files $PHOME/tcl_dir/rc/rc.tcl

endif

E.3 TCL Script to run Place n’ Route

#!/bin/tcsh

cd $PHOME/pnr_dir

setenv TMP $LD_LIBRARY_PATH

#setenv LD_LIBRARY_PATH "/usr/X11R6/lib:/usr/X11R6/lib64:/usr/lib64 :/opt/Tcl/lib"

setenv LD_LIBRARY_PATH "/usr/X11R6/lib:/usr/X11R6/lib64:/usr/lib64:/opt/Tcl/lib"

if ("$MODE_IS_64BIT" == "TRUE") then

echo "Encounter being called in 64-bit mode"

encounter -64 -init $PHOME/tcl_dir/enc/enc.tcl -log $PHOME/pnr_dir/logfiles/encounter

.log

92

else

echo "Encounter being called in 32-bit mode"

encounter -32 -init $PHOME/tcl_dir/enc/enc.tcl -log $PHOME/pnr_dir/logfiles/encounter

.log

endif

setenv LD_LIBRARY_PATH $TMP

E.4 TCL Scripts to Export Netlist from EDI to Cadence Virtuosos

#!/usr/bin/env tclsh

#

This script will convert a gds file produced by the edi tools into a OA lib

which can be used in ic6

#

Configuration described in env.tcl

set phome $env(PHOME)

cd $phome

source env.tcl

#

Remove the library if it exists

#

if {[file exists $MY_OA_LIB]} {

file delete -force $MY_OA_LIB

}

set strminOptions "\

-library ${MY_OA_LIB} \

-runDir ${PHOME} \

-replaceBusBitChar \

-strmFile ${PNR_DIR }/ netlists/${BASENAME}_pnr_fe.gds \

-topcell ${BASENAME} \

-refLibList ${TCL_DIR }/conf/refLibList \

-attachTechFileOfLib TECH_S35D4 \

-writeMode overwrite \

-view layout \

"

set strminCmd "strmin ${strminOptions} &"

eval exec ${strminCmd}

#!/usr/bin/env tclsh

#

Script to convert a verilog netlist into a schematic

#

Configuration described in env.tcl

set phome $env(PHOME)

cd $phome

source env.tcl

Need to create a ihdl parameter file

It should be placed into the root of the

project directory

Remove the ihdl.param file if it exists

if {[file exists ${PHOME}/ihdl.param] == 1} {

file delete ${PHOME}/ihdl.param

}

Write out the new ihdl.param file

set fid [open "$PHOME/ihdl.param" w]

puts $fid "ref_lib_list := basic , CORELIB"

puts $fid "dest_sch_lib := ${MY_OA_LIB}"

puts $fid "log_file_name := ${PNR_DIR }/ strmIn/${BASENAME}_ihdl.log"

puts $fid "import_if_exists := 1"

93

close $fid

Set up the options for the ihdl program call

set ihdlOptions "\

-PARAM $PHOME/ihdl.param \

-IHDL_ALLOW_GLOBALS \

-cdslib $PHOME/cds.lib \

$PNR_DIR/netlists/${BASENAME}_pnr_fillcap.v \

"

Create the command we will used to invoke the ihdl program

set ihdlCmd "ihdl ${ihdlOptions} &"

Call the ihdl progam

eval exec ${ihdlCmd}

94

APPENDIX F

Scripts to Generate Piece Wise Linear files from the VCD Dump file

F.1 Make VCD TCL Script

#!/usr/bin/env tclsh

#

This is a Tcl script which can be used to

create the Verilog code that generates

a vcd file

set phome $env(PHOME)

source $phome/env.tcl

set signalList ""

foreach item $VCD_SIGNALS {

if {[regexp {([0-9a-zA -Z_]+) \[([0 -9]+) :([0 -9]+) \]} $item]} {

lappend signalList [expandBus $item]

} else {

lappend signalList $item

}

}

Need to flatten the list of sub -lists

set s $signalList

while {[set t [join $s]] ne $s} {set s $t}

set signalList $t

#

Open up a file for writing

#

set fid [open "$TB/${BASENAME}_vcd.v" w]

#

Name of vcd file

#

set vcd_dir "$PHOME/vcd"

set filename "${BASENAME }.vcd"

If we have a vcd file let us delete it

file delete "${vcd_dir }/${filename}"

#

Create a list of all of the bus signals

#

set pattern {[0-9a-zA-Z_]+\[[\d]+\]}

set busSignals [regexp -all -inline "$pattern" $signalList]

#

Need to create alternate names for the bus related signals

#

foreach item $busSignals {

regsub {\[} $item {_} tmp

regsub {\]} $tmp {} alt_item

set altName($item) $alt_item

}

#

Write out the wire and the assign statements to the verilog filr

#

puts $fid "\n// Create wires and assigns for all of the bus -related signals .\n"

set names [array names altName]

foreach name $names {

puts $fid "wire\t$altName($name) ;"

95

puts $fid "assign $altName($name) = $name ;"

}

puts $fid ""

#

Go through the signal list and replace all of the bus related signal names

with their alternate names.

#

set vcdList ""

foreach signal $signalList {

set flag false

foreach name $names {

if {$signal == $name} {

lappend vcdList $altName($name)

set flag true

}

}

if {$flag == false} {

lappend vcdList $signal

}

}

#

Here is what must be written into the vcd file

#

puts $fid "\n// Create the dumpfile and specify variables which should be dumped. \

n"

puts $fid "\ninitial begin"

puts $fid "\t\$dumpfile (\"${vcd_dir }/ $filename \");"

puts $fid "\t\$dumpvars (1\,"

set last_item [lindex $vcdList end]

foreach item $vcdList {

if {$item != $last_item} {

puts $fid "\t\t$item ,"

} else {

puts $fid "\t\t$item"

}

}

puts $fid "\t) ;"

puts $fid "end\n"

Close the file

close $fid

#

Now we need to create the verilogA file

#

cd $phome

set va_dir_root "${MY_OA_LIB}Test/${BASENAME}_stim"

file mkdir "$va_dir_root"

file mkdir "$va_dir_root/veriloga"

set fid [open "${va_dir_root }/ veriloga/veriloga.va" w]

#

We need to modify the vector signals(bus signals) in veriloga supported format i,e

[7:0] ad_in

#

foreach signal $VCD_SIGNALS {

if {[regexp {([0-9a-zA -Z_]+) \[([0 -9]+) :([0 -9]+) \]} $signal]} {

regexp {([0 -9a-zA-Z_]+) \[([0 -9]+) :([0 -9]+) \]} $signal match name left_index

right_index

set signal_modi "\[${left_index }\:${right_index }\]${name}"

lappend signalList_va $signal_modi

lappend ioList_va $name

} else {

lappend signalList_va $signal

lappend ioList_va $signal

96

}

}

#

We need to create a pwl voltage source for each of

the signals in the vcdList

#

set length [llength $ioList_va]

puts $fid "// VerilogA module for PWL voltage sources. \n"

puts $fid "\‘include \" constants.vams\""

puts $fid "\‘include \" disciplines.vams\""

puts -nonewline $fid "module stimulus(vdd ,"

foreach name $ioList_va {

if {($name != $last_item)^($length == 1)} {

puts -nonewline $fid "$name ,"

} else {

puts $fid "$name);\n"

}

}

#

We need to declare input/output pins

#

#

foreach signal $signalList_va {

puts $fid "\toutput\t$signal;"

}

puts $fid "\toutput\tvdd;"

puts $fid "\n"

#

We also need to declare input/output pins as electrical

#

#

foreach signal $signalList_va {

puts $fid "\telectrical $signal;"

}

puts $fid "\telectrical vdd;"

puts $fid "\n"

puts $fid "\telectrical gnd;"

puts $fid "\tground gnd;"

puts $fid "\r"

foreach signal $vcdList {

set node $signal

foreach name $names {

if {$altName($name) == $signal} {

set node $name

}

}

set str "\tvsource \#(. type (\"pwl\"), .file (\" $PHOME/vcd/$signal.pwl \")) V\

_$signal \($node ,gnd\);"

puts $fid $str

}

set vdd_source "\tvsource \#(. type (\" pulse \") ,.val0 (0) ,.val1 (3.3) ,.period (20) ,.

delay(1e-6) ,.rise(1e-6) ,.width (10) ,.fall(1e-6)) V_vdd\(vdd ,gnd\);"

puts $fid ${vdd_source}

puts $fid "\rendmodule"

Close the file

close $fid

puts ""

puts "Sucessfully created ${TB}/${BASENAME}_vcd.v"

puts "Make sure that you include above file in your testbench"

puts ""

puts "Sucessfully created ${va_dir_root }/ veriloga/veriloga.va"

puts "This veriloga module will play pwl waveforms from series of files"

97

puts ""

puts "Next step is to run simulation of your verilog code using command \"sim\""

puts "Then run \" vcd2pwl \" command to generate series of pwl files from the above vcd

file"

puts ""

F.2 VCD to PWL python script

#!/usr/bin/python

#

GLE: 6 June 201

#

Fixed several bugs !!!

It now finds floating point numbers correctly

Also fixed the bug tha Po discovered

#

Python script to convert vcd file to a series of pwl files

#

#

This script will read and parse a VCD (Value Change Dump) file

produced by a Verilog simulation

#

A SPICE piece -wise -linear description is created for each signal in the VCD file

#

Modfied on September 14, 2014 to support real variables

#

&&

modified by GLE and Geetha on Nov. 14, 2018 to actually use time multiplier

correctly.

also made it read basename for base file so we no longer need to give a filename

&&&

Need system calls

import sys ;

import os ;

Retreive the value of some important Linux variables

home = os.environ[’HOME’] ;

phome = os.environ[’PHOME’] ;

os.chdir(phome) ;

Need command line arguments from operating system

from sys import argv ;

Need the regular expression package

import re ;

Set some electrical parameters

HI = 3.3 ; # Electrical level for a logical 1

LO = 0.0 ; # Electrical value for a logical 0

TRF = 1e-9 ; # Rise/fall time in sec

REAL_SCALE = 1.0; # Scale factor for the real valued signals

Creates symbol_table

symbol_table = {} ;

tracksymbols = [] ;

#

Create a global variable token_table

Token is the key with the pattern as the value

#

token_table = {"DATE" : "^\$date" ,

"VER" : "^\ $version" ,

"TIME" : "^\ $timescale",

"SCOPE" : "^\ $scope",

"DUMP" : "^\ $dumpvars" ,

"VAR" : "^\$var",

98

"END" : "^\$end",

"UPDATE" : "^\#[\d]+",

"VCD" : "^[01]",

"VCDR" : "^r" } ;

Create a function that parses a line and returns the appropriate token

def parser(line):

global token_table ; # token_table is a global variable

keys = token_table.keys() ;

token = "NULL" ; # The NULL token is our default

for key in keys :

pattern = token_table[key] ; # Pattern we are attempting to match

match = re.match(pattern , line) ;

if (match) :

token = key ; # If there is a match set token equal to the

key

return token ; # Return the token!

#

Create a function that deletes the last updated lines from particular pwl files

#

def deletelastlinefromfile(file1 ,file2):

command = "sed ’$,$d’ ";

command += file1;

command += " > ";

command += file2;

os.system(command);

command = "mv ";

command += file2;

command += " ";

command += file1;

os.system(command);

Read the file called base in the project direcotry to find the basename

Open up the file for reading

try:

base_fid = open("base", "r") ;

except IOError:

print "Could not open file called base for reading!" ;

Read the basename

vcd_file_name = base_fid.readline () ;

vcd_file_name = vcd_file_name.rstrip("\n") ;

Close the base file

base_fid.close() ;

Concat the file extension on to it

vcd_file_name += ".vcd" ;

Move to the vcd subsirectory

os.chdir("./vcd") ;

User is expected to provide name of vcd file to read

Expecting exactly two command line arguments

if (len(sys.argv) == 1) :

cmd = argv ;

print "" ;

print "Reading file: %s" % vcd_file_name ;

print "" ;

else :

print "" ;

print "Usage: vcd2pwl" ;

print ""

sys.exit ;

Open up the file for reading

try:

vcd_fid = open(vcd_file_name , "r") ;

except IOError:

print "Could not open file for reading!" ;

99

Read one line at a time from the vcd file

Read in first line from file

line = vcd_fid.readline () ;

Keep reading lines from the file until EOF reached

while line :

#

Send line off to be parsed ... comes back with a token

#

token = parser(line) ;

#

If we have a timescale directive then read the next line and pick off the

multiplier

#

if (token == "TIME") :

line = vcd_fid.readline () ; # Read in the next line

fields = line.split() ; # Split the line up into fields

value = float(fields [0]) ; # value (first field)

unit = fields [1] ; # unit ... ps , ns, us etc (second field)

if (unit == "ns") : # Determine what our time base multiplier is

multiplier = 1e-9 * value ;

elif (unit == "ps") :

multiplier = 1e-12 * value ;

elif (unit == "us") :

multiplier = 1e-6 * value ;

else :

multiplier = 1.0 * value ;

print "Mutliplier is %g.\n" % multiplier ;

#

If we have a var directive then pick off signal name and symbol to be used to

represent the signal

#

elif (token == "VAR") :

fields = line.split() ; # Split line up into fields

symbol = fields [3] ; # Symbol used to represent signal (4th field)

signal = fields [4] ; # Signal name (5th field)

symbol_table[symbol] = signal ; # Build our dictionary of symbols and

signal names

#

If we have a dump directive then open up a bunch of files for writing

and then get the initial conditions

#

elif (token == "DUMP") :

time = 0 ; # Set time to 0.0

keys = symbol_table.keys() ; # The keys are the symbols

fid = {} ; # Create a dictionary

for key in keys : # Build the dictionary

signal_name = symbol_table[key] ;

file_name = signal_name + ".pwl" ;

fid[key] = open(file_name , "w") ; # Opening a .pwl file for each signal

#

Keep reading lines for the DUMP state until we get the END token

For real valued signals the line will begin with a r

#

line = vcd_fid.readline () ; # Read next line from the file

while (parser(line) != "END") :

value = line [0] ; # First character is the value of the signal

if (value == ’0’) : # Convert to an electrical level

voltage = LO ;

symbol = line [1] ; # Second character is the symbol used for the

signal

elif (value == ’1’) :

voltage = HI ;

100

symbol = line [1] ; # Second character is the symbol used for the

signal

elif (value == ’r’) :

fields = line.split() ; # Split the line up into sapce delimited

fields

m = re.search (’[\d.]+’, fields [0]); # Find the float

m = re.search(’[-+]?(\d+(\.\d*) ?|\.\d+)([eE][-+]?\d+)?’, fields [0]); #

Find the float

voltage = float(m.group (0)) ; # Convert to float

voltage *= REAL_SCALE ;

symbol = fields [1] ;

else :

pass ;

line_out = "%g %g\n" % (time , voltage) ;

fid[symbol].write(line_out) ; # Write out inital values at time t=0

line = vcd_fid.readline () ;

#

Need to compute our new time ... UPDATE state

#

elif (token == "UPDATE") :

time = int(line [1:len(line)]) ; # Strip off first character which is a

pound sign

if (tracksymbols != []) :

tracksymbols [:] = [] ;

#

Here is what we do when a value changes and is dumped (VCD)

#

elif (token == "VCD") :

value = line [0] ; # First character is the NEW value either a 0 or a 1

symbol = line [1] ; # Next character is the symbol

if (value == ’0’) : # Convert to an electrical level

voltage = HI; # Looks wrong but not

else : # Need to write out old value first

voltage = LO ;

line_out = "%g %g\n" % (multiplier * time , voltage) ; # time came from the

UPDATE state

file2 = "tmp_" + fid[symbol].name ;

if symbol in tracksymbols :

fid[symbol].close ();

deletelastlinefromfile(fid[symbol].name ,file2) ;

else :

fid[symbol] = open(fid[symbol].name , "a") ;

fid[symbol].write(line_out) ;

time += TRF ; # Increment time by a rise/fall time

if (value == ’0’) : # Compute new electrical levels

voltage = LO;

else :

voltage = HI ;

line_out = "%g %g\n" % (multiplier * time + TRF , voltage) ; # Write out "new" (

time , voltage) pair

if symbol in tracksymbols :

fid[symbol].close ();

deletelastlinefromfile(fid[symbol].name ,file2) ;

tracksymbols.remove(symbol) ;

else :

fid[symbol] = open(fid[symbol].name , "a") ;

fid[symbol].write(line_out) ;

tracksymbols.append(symbol) ;

elif (token == "VCDR") :

fields = line.split() ; # Split the line up into space delimited

fields

m = re.search (’[\d.-]+’, fields [0]); # Find the float

101

m = re.search(’[-+]?(\d+(\.\d*) ?|\.\d+)([eE][-+]?\d+)?’, fields [0]); # Find

the float

voltage = float(m.group (0)) ; # Convert to float

voltage *= REAL_SCALE ;

symbol = fields [1] ;

line_out = "%g %g\n" % (multiplier * time , voltage) ; # time came from the

UPDATE state

fid[symbol].write(line_out) ;

#

Go read the next line from the file and go back to start of while loop

#

line = vcd_fid.readline () ;

#

Close up all of the files

#

vcd_fid.close () ;

keys = symbol_table.keys() ; # The keys are the symbols

for key in keys :

name = symbol_table[key] ;

name += ".pwl" ;

print "Successfully created: %s" % name ;

fid[key]. close() ;

print ""

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Research Background
	HINP IC
	Linear circuits
	Timing circuits
	Configuration and readout circuits

	Previous Work
	Object and Scope of Work

	SYSTEM LEVEL DESIGN
	Introduction
	System Operation
	MotherBoard
	Chipboard FPGA
	PicoBlaze Soft Core
	HINP Interface
	Analog-to-Digital Converter

	COMMON CHANNEL
	Digital Design Using EDI Tools
	Why Standard Cell Design
	Standard Cell Design Flow

	Configuration and Readout Electronics
	Address Register
	Configuration Registers
	Mode Decoding Circuitry
	Shadow Register
	OR Generation
	Channel Address Generation Circuitry
	Channel Select Generation Circuitry
	4-to-16 Decoder

	SIGNAL CHANNEL
	Hit Register
	Auto Reset Generation
	Analog Reset Generation
	DAC

	SUMMARY. CONCLUSIONS, AND FUTURE WORK
	Summary
	Conclusions
	Future Work

	REFERENCES
	APPENDICES
	Verilog Description of Digital Design Implemented in HINP5
	Verilog description of the digital circuits in common channel
	Verilog description of shadow register

	Verilog description of the digital circuits in a signal channel
	Verilog description of HINP channels

	System Verilog Test Fixture for Verification
	SystemVerilog definition of global parameters
	SystemVerilog tasks
	SystemVerilog test bench for verification

	SDC Constraints
	HINPdigital SDC file
	Channeldigital SDC file

	Environment Files Used in Design
	Env file for a HINP digital design used in HINP Chip in TCL
	Env file for a Channel digital design used in HINP Chip in TCL

	TCL Scripts for EDI
	TCL Script to run Simulation
	TCL Script to run Synthesis
	TCL Script to run Place n' Route
	TCL Scripts to Export Netlist from EDI to Cadence Virtuosos

	Scripts to Generate Piece Wise Linear files from the VCD Dump file
	Make VCD TCL Script
	VCD to PWL python script

