Design of a Restartable Clock Generator
for Use in GALS SoCs

Masters Thesis Defense

Hu Wang
August 6, 2008

IC Design and Research Laboratory
ECE Department Southern Illinois University of Edwardsville
Design Team

Southern Illinois University Edwardsville
- Dr. George Engel
- Hu Wang

Blendics Integrated Circuit Systems, LLC
- President. Jerry Cox
Background

- Verification occupies 60% to 80% of the engineering hours expended on the design of complex integrated circuits (ICs).
- Module reuse along with elimination of the global verification component of chip design has the potential to cut the design time of future ICs.
- Develop a novel methodology that blends clockless and clocked systems and eliminates the need for global verification. It is a special case of the Globally Asynchronous, Locally Synchronous (GALS) design approach.
The clock generator serves as a local clock to the data processing subsystem.

A clockless sequencing network between the two subsystems to initiate the operation of the data processing subsystem’s local clock, and to signal an acknowledgment of the completion of that action.

Avoids synchronizer failures by stopping the clock and then restarting it when data is valid.
The operation of the clock generator is based on the simple trigonometric identity, \(\sin(\omega(t-u)) = \sin \omega t \cdot \cos \omega u - \cos \omega t \cdot \sin \omega u \)
Clock generator

- Constructed from a pair of fully-differential analog multipliers, a comparator, a quad track-and-hold (T/H) circuit, a pair of SR latches, and an OR gate.

- The restartable clock can be stopped and then restarted at an arbitrary phase of the source.

- Can be connected to an external crystal oscillator or a local all-silicon, MEMS-based oscillator as input sources.
Initial Analog Multiplier

First presented by Hsiao and Wu in their paper “A parallel structure for CMOS four-quadrant analog multiplier and its application to a 2-GHz RF down-conversion mixer” in 1998.
Consist of six combiners which has a symmetrical structures because they combine the input signals to form the output.

V_B is the DC pedestal on which the input signals rest.

Multiplication of two signals, v_1 and v_2 is achieved through the use of the quarter-square principle shown below

\[x \cdot y = \frac{1}{4} [(x + y)^2 - (x - y)^2] \]
Original Combiner Design

- The Square Law characteristic of a MOS transistor
 \[i_{DS} = \frac{1}{2n} \cdot K_{pn} \cdot S_n \cdot (v_{GS} - V_{TN})^2 \]

- One of the voltage outputs of the “first stage” combiner
 \[v_{out} = \frac{-R}{2n} \cdot K_{pn} \cdot S_n (V_B + v_1 - V_{TN})^2 + \frac{-R}{2n} \cdot K_{pn} \cdot S_n (V_B + v_2 - V_{TN})^2 + V_{DD} \]
The Output Current of the Multiplier

- The output currents i_{op} and i_{om}

$$i_{op} = \frac{S_n \cdot K_{pn}}{2n} \left[v_a^2 + v_b^2 - 2V_{TN} \cdot (v_a + v_b) + 2V_{TN}^2 \right]$$

$$i_{om} = \frac{S_n \cdot K_{pn}}{2n} \left[v_c^2 + v_d^2 - 2V_{TN} \cdot (v_c + v_d) + 2V_{TN}^2 \right]$$

- The differential output current of the multiplier, i_{out}

$$i_{out} = K_{mult} \cdot v_1 \cdot v_2$$

where $K_{mult} = 4 \left(\frac{S_n \cdot K_{pn}}{n} \right)^3 \cdot R^2 \cdot (V_B - V_{TN})^2$
Improved Analog Multiplier

➢ The real resistor is replaced by a PFET transistor working in resistive region.

\[R_{eq} = \frac{n}{K_{pp} \cdot S_p \cdot (V_{DD} - V_{ctrl} - |V_{TP}|)} \]

➢ Re-written expression of \(K_{mult} \)

\[K_{mult} = \left[\left(\frac{2V_R}{(V_B - V_{TN})} \right)^2 \left(\frac{S_n \cdot K_{pn}}{n} \right) \right] \]

➢ By adjusting the control voltage, \(V_{ctrl} \), the resistance can be altered in order that the DC voltage, \(V_R \), across device \(M_3 \) is tuned to the desired value.
Automatic gain control circuit for resistive PFET

- Voltage divider M_{20} & M_{21}
- Symmetric Miller type – Operational Transconductance Amplifier (OTA)
- Negative feedback loop to generate the control voltage V_{ctrl}
Sensitivity Analysis

Estimated and simulated results in multipliers

<table>
<thead>
<tr>
<th>Process Corners</th>
<th>Initial analog multiplier</th>
<th>Improved analog multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{\Delta I_{out_est}}{I_{out_est}}$</td>
<td>$\frac{\Delta I_{out_sim}}{I_{out_sim}}$</td>
</tr>
<tr>
<td>Typical</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Best</td>
<td>54%</td>
<td>26%</td>
</tr>
<tr>
<td>Worst</td>
<td>-48%</td>
<td>-57%</td>
</tr>
</tbody>
</table>

For initial multiplier:

$$\frac{\Delta I_{out_est}}{I_{out}} = \frac{\Delta K_{mult}}{K_{mult}} = 2 \cdot \frac{\Delta R}{R} + 3 \cdot \frac{\Delta K_{pn}}{K_{pn}} - 2 \cdot \frac{V_{TN}}{V_{B} - V_{TN}} \cdot \frac{\Delta V_{TN}}{V_{TN}}$$

For improved multiplier:

$$\frac{\Delta I_{out_est}}{I_{out}} = \frac{\Delta K_{mult}}{K_{mult}} = \frac{\Delta K_{pn}}{K_{pn}} + 2 \cdot \frac{V_{TN}}{V_{B} - V_{TN}} \cdot \frac{\Delta V_{TN}}{V_{TN}}$$

ECE Department Southern Illinois University of Edwardsville
High-Speed Comparator

- Current Mirror
- High-Speed NFET latch
- Self-biased differential amplifier
- Push-pull output drivers
Non Ideal Effects

- Channel length modulation
- Mismatch and offset analysis
Channel length Modulation

- The $I-V$ characteristic of a FET does not fit in the ideal square law.
 \[i_{DS} = \frac{1}{2n} \cdot K_{pn} \cdot S_n \cdot (V_{GS} - V_{TN})^2 \]

- Factor $(1 + \lambda V_{DS})$ should be considered. λ represents the channel length modulation factor which is inversely proportional to the length of the device, L.

- The multiplier gain
 \[K_{mult} = \left[\frac{2V_R}{(V_B - V_{TN})[1 + \lambda \cdot (V_{DD} - V_R)]} \right]^2 \left(\frac{S_n \cdot K_{pn}}{n} \right) \]
Comparison of simulation results

<table>
<thead>
<tr>
<th></th>
<th>Mathcad</th>
<th>Electrical Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With λ</td>
<td>Without λ</td>
</tr>
<tr>
<td>Output of the multiplier’s</td>
<td>I$_{\text{Req}}$</td>
<td>680 μA</td>
</tr>
<tr>
<td>first-stage combiner</td>
<td>V$_{\text{BO1}}$</td>
<td>0.5 V</td>
</tr>
<tr>
<td>Peak-to-peak output</td>
<td>I$_{\text{out}}$</td>
<td>1.49mA</td>
</tr>
</tbody>
</table>

Note: I$_{\text{Req}}$ is DC drain-to-source current of PFET M_3 in the multiplier’s first-stage combiners. V$_{\text{BO1}}$ is the DC output voltage for the first-stage combiners. I$_{\text{out}}$ is the peak-to-peak differential current transferred to the NMOS latch in the comparator.

If λ is included, the analytical predictions agree closely (within 5%) with the results obtained from electrical simulations.
Mismatch and offset analysis

- Random offsets due to mismatch in transistor parameters will result in the clock’s duty cycle differing from the ideal fifty percent.

- In fact, if the offset current becomes larger than the peak differential output current, the clock becomes stuck at one logic level.

- The standard deviation of the offset current was computed as 15 µA. The 6σ value, 90µA is well below the upper limit of 190 µA which was needed to ensure a reasonable duty cycle for the output clock.
Variance computed at each stage

- For NFET in the “first stage” combiner

\[
\sigma_{I_{DS1}}^2 = g_m^2 \cdot \sigma_{V_{TN}}^2 + I_{DS1}^2 \cdot \left(\frac{\sigma_{K_{pn}}^2}{K_{pn}^2} + \frac{\sigma_{W_n}^2}{W_n^2} + \frac{\sigma_{L_n}^2}{L_n^2} \right) = (2.5 \mu A)^2
\]

- For the resistive PFET of the “first stage” combiner

\[
\sigma_{R_{eq}}^2 = R^2 \cdot \left(\frac{\sigma_{V_{TP}}^2}{V_{SAT}^2} + \frac{\sigma_{K_{pp}}^2}{K_{pp}^2} + \frac{\sigma_{W_p}^2}{W_p^2} + \frac{\sigma_{L_p}^2}{L_p^2} \right) = (4.3 \Omega)^2
\]

- For the output of the “first stage” combiner

\[
\sigma_{V_{O1}}^2 = 2R_{eq}^2 \sigma_{I_{DS1}}^2 + (2I_{DS1})^2 \sigma_{R_{eq}}^2 = (3.8 mV)^2
\]

- For the differential current output delivered to the NMOS latch

\[
\sigma_{I_{out}}^2 = 8 \cdot g_m^2 \cdot (\sigma_{V_{TN}}^2 + \sigma_{V_{O1}}^2) + 8 \cdot I_{DS2}^2 \cdot \left(\frac{\sigma_{K_{pn}}^2}{K_{pn}^2} + \frac{\sigma_{W_n}^2}{W_n^2} + \frac{\sigma_{L_n}^2}{L_n^2} \right) = (15 \mu A)^2
\]
Simulation results

$V_B = 570\text{mV}$

$Amp = 200\text{mV}$

$Freq = 1\text{GHz}$

Duty cycle $\approx 50\%$
Simulation result (cont.)

- Delay in restarting clock is less than 1.5 ns.
- The peak-to-peak variation in the time required to restart the clock is 120 psec.
Summary

- The restartable clock generator is implemented in 90nm CMOS process.
- Completely transistor design without resistors existing in the circuit.
- Up to 1GHz, clock frequency can be achieved across different process corners.
- Only a single 1V supply is required with 10mW power consumption.
- The duty cycle of the clock output is near 50%.
- The delay in restarting the clock is small, less than 1.5ns.
Conclusion

- The restartable clock can be stopped and then restarted at an arbitrary phase of the source, like a delay based clock.

- Completely eliminates metastability hazards.

- Can be connected to an external crystal oscillator or a local all-silicon, MEMS-based oscillator as input sources.
Further work

- A small systematic offset should be added into the comparator to ensure that the clock always restart from low to high.

- Monte Carlo simulations to confirm the results presented in thesis predicting the likely offset current will be performed in the future.

- Efficiently generate the quadrature input signals from an external crystal oscillator or MEMS-based clock.
Acknowledgement

- Dr. George Engel, SIUE
- President. Jerry Cox, Blendics, LLC
- Mr. Sasi K. Tallapragada
- Mr. Dinesh Dasari
- Mr. Nagendra S. Valluru
- NSF-STTR and Blendics, LLC
Thank You!

Hu Wang
Graduate student
Email: hwang@siue.edu

IC Design Research Laboratory
Electrical and Computer Engineering Department
Southern Illinois University Edwardsville