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Chapter 12 

Local Weak Property Realism: Consistent Histories 

Earlier, we surmised that weak property realism can escape the strictures of Bell’s 

theorem and KS.  In this chapter, we look at an interpretation of quantum mechanics that 

does just that, namely, the Consistent Histories Interpretation (CH).   

12.1 Consistent Histories 

The basic idea behind CH is that quantum mechanics is a stochastic theory 

operating on quantum histories.  A history a is a temporal sequence of properties held by 

a system.  For example, if we just consider spin, for an electron a history could be as 

follows: at

  

t0, 

  

Sz = 1; at 

  

t1, 

  

Sx =1; at 

  

t2, 

  

Sy = -1, where spin components are measured in 

units of   

  

h /2.  The crucial point is that in this interpretation the electron is taken to exist 

independently of us and to have such spin components at such times, while in the 

standard view 1, 1, and 

  

-1 are just experimental return values.  In other words, while the 

standard interpretation tries to provide the probability that such returns would be obtained 

upon measurement, CH provides the probability Pr(a) that the system will have history a, 

that is, such and such properties at different times.  Hence, CH adopts non-contextual 

property realism (albeit of the weak sort) and dethrones measurement from the pivotal 

position it occupies in the orthodox interpretation.  To see how CH works, we need first 

to look at some of the formal features of probability.  

12.2 Probability 

Probability is defined on a sample space S, the set of all the mutually exclusive 

outcomes of a state of affairs; each element e of S is a sample point to which one assigns 

a number 

  

Pr(e) satisfying the axioms of probability (of which more later).  An event is a 
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set of one or more sample points (a subset of S).  If S contains n elements, then the set of 

all events, the event algebra, has 

  

2n  elements, including the empty set 

  

Æ (the set with no 

points) and S itself.  In other words, the event algebra is the set of all the subsets of S.  

Given an event A, 

  

~ A  is the complement of A, namely, the event of all the points in S 

that do not belong to A, that is, the event that occurs if and only if A does not occur. 

EXAMPLE 12.2.1 

Consider the tossing of a fair die. Then, 

  

S = 1,2,3,4,5,6{ }; 

  

1{ } is the event  ‘1 

appears on top’ and it has probability 1/6; 

  

3,5{ } is the event ‘3 and 5 (in whatever order) 

appear on top on two successive tosses’ and it has probability 1/18; S is, for example, the 

event ‘a number appears on top’ and 

  

Æ{ } is, for example, the event ‘no number appears 

on top.’  Finally, if

  

A = 3,5{ }, then 

  

~ A = 1,2,4,6{ }. 

Given the sample space S and two events A and B on S, one can define two 

operations, disjunction and conjunction, as follows. 

  

C = A È B,          (12.2.1) 

the disjunction of A and B, is the event of all the points that belong to A and/or B.  For 

example, if 

  

A = 3,5{ } and 

  

B = 1,5{ }, then 

  

C = 1,3,5{ }. C occurs if and only if A and/or B 

occurs. 

  

D = A Ç B ,         (12.2.2)  

the conjunction of A and B, is the event of all the points belonging to both A and B.  D 

occurs if and only if both A and B occur.  Disjunction and conjunction satisfy the 

following laws L1-L4: 

L1, or Commutative Law: 

  

A È B = B È A  and

  

A Ç B = B Ç A . 

L2, or Associative Law: 

  

A È B È C( )= A È B( )È C and 

  

A Ç B Ç C( )= A Ç B( )Ç C . 
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L3, or Distributive Law: 

  

A È B Ç C( )= A È B( )Ç A È B( ) and 

  

A Ç B È C( )= A Ç B( )È A Ç B( ).  

L4, or Identity Law: there exist two events 

  

Æ{ } and S such that 

  

A È Æ{ }= A  and 

  

A Ç S = A . 

Any structure on which one can define disjunction, conjunction, and complement in such 

a way as to satisfy L1-L4 is a Boolean algebra.  Many common algebras such as set 

theory and propositional logic, are Boolean algebras.  What we are going to do now is to 

construct a Boolean algebra in Hilbert space.   

EXAMPLE 12.2.2 

Suppose we toss two fair dice simultaneously.  Then, 

  

3È 5 , (3 or 5 come up), 

obtains just in case any, or all, of those numbers comes up.1  By contrast, 

  

1Ç 4  (1 and 4 

come up) is true just in case both 1 and 4 come up.  Note that 

  

3È 4  says exactly the same 

thing as (is equivalent to) 

  

~ ~ 3Ç ~ 4( ), that is, it is false that neither 3 nor 4 come up. 

12.3 Properties at a Time 

Given a Hilbert space H, assumed to be finite, a projector P identifies a linear 

subspace 

  

P  of H composed of all and only the eigenkets 

  

c  of P such that 

  

P c = c .2  

Hence, the generic projector 

  

P = y y  operates on the eigenkets in 

  

P  as the identity 

operator: 

  

P y = y y y = y .  When 

  

P = H , then P is the identity operator I that 

transforms every ket in H into intself.  If 

  

y1,...,yn{ } is an orthonormal basis of H, then  

  

I = yi y i

i

å .         (12.3.1)  

                                                 
1 Since 

  

3È 5obtains if and only if ‘

  

3È 5’ is true, we use the two interchangeably.  

2 Here, as in the remainder of this exposition of CH, we follow Griffiths, R., (2002). 
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Clearly, if 

  

f  is orthogonal to the members of 

  

P , then it is an eigenket of P but it does 

not belong to 

  

P  because 

  

P f = y y f = 0.  Given a projector P,  

  

~ P = I - P           (12.3.2) 

is P’s complement.  

A physical property is something that can be predicated of a physical system at a 

time.  For example, ‘the z-component of spin is 1’ is a physical property.  Note that a 

physical property is always associated with a value.  So, 

  

Sz  is not a physical property, but 

  

Sz = 1 is.  If a system S is described by a ket 

  

c  in 

  

P  (that is,

  

P c = c ), then one can 

say that S has the property P standardly associated with 

  

c .3  If 

  

c  is orthogonal to the 

kets in 

  

P  (that is,

  

P c = 0), then S has ~P (the negation of the property P), namely, the 

property associated with the projector ~P.  If 

  

c  is not an eigenket of P, then the 

property P is undefined.  It follows that a property associated with I always holds and one 

associated with the subspace made up of the zero vector never holds.  Two projectors P 

and Q are orthogonal if  

                                                 
3 Here we denote both the property and its projector as P.  Of course, they are not the 

same thing: properties exist in the real world, while projectors are abstract entities 

existing in configuration space.  However, since for simplicity we assume that there is no 

degeneracy, there is a one-one correspondence between properties and projectors.  At 

times, however, we shall denote with 

  

P[ ] the projector associated with property P.  
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PQ = QP = 0.4          (12.3.3) 

A decomposition of the identity operator I is a collection of orthogonal projectors 

  

Ri such 

that  

  

I = Ri

i

å .         (12.3.4)   

We can logically link properties by using the following two connectives.  The first 

connective is conjunction, symbolized by ‘

  

Ç ’, which stands for ‘and’, so that ‘

  

P Ç Q’ 

means P and Q.  Rule Q1 says that quantum-mechanically this is represented by 

  

P[ ]× Q[ ], 

where 

  

P[ ] is the projector associated with P and 

  

Q[ ] that associated with Q.  

The second connective is disjunction, symbolized by ‘

  

È ’, which stands for 

‘and/or’, so that ‘

  

P È Q’ means P and/or Q.  Rule Q2 says that quantum-mechanically 

disjunction is represented by 

  

P[ ]+ Q[ ]- P[ ]× Q[ ].  Crucially, 

  

P Ç Q  and 

  

P È Q  are 

defined only if 

  

P[ ] and 

  

Q[ ] commute.  It can be shown that a decomposition of the 

identity projector I constitutes a sample space and that the event algebra is a Boolean 

algebra under the operations of conjunction and disjunction.  All of this looks confusing, 

but, as the following example will show, there is really less than meets the eye.   

EXAMPLE 12.3.1   

Consider a spin-half particle in space H.  The identity projector on H is 

  

I =   + ¯ ¯ , the sum of orthogonal, and therefore commuting, projectors.  Consider 

now the projector 

  

P =   .  Then, 

  

P =   and the property P is 

  

Sz = 1.  If the particle is 

                                                 
4 One must not confuse the orthogonality between vectors (their inner product is zero) 

and between projectors (their product is zero).  Obviously, orthogonal projectors 

commute. 
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in state 

  

 , then we can say that it has the property 

  

Sz = 1.  If the particle is in state 

  

¯ , 

which is orthogonal to 

  

 , then it has the negation of 

  

Sz = 1, namely, 

  

Sz = -1.  The 

reason is that 

  

I - P =   + ¯ ¯ -   = ¯ ¯ =~ P  and 

  

Sz = -1 is associated with 

  

¯ .  

If the particle is in state 

  

1

2
 + ¯( ), then 

  

Sz = 1 is undefined.  The property associated 

with I is ‘

  

Sz = 1 or 

  

Sz = -1’ and it always hold, while the property ‘

  

Sz = 1 and 

  

Sz = -1’ 

never does.  The properties ‘

  

Sz =1( )Ç Sx =1( )’ and ‘

  

Sz =1( )È Sx =1( )’ are undefined.5   

Now let us suppose that particle a is in spin-state 

  

 , that it moves, and that its position at 

x corresponds to the state 

  

x .  Using obvious notation, Q1 says that the quantum 

mechanical representation of ‘

  

Sz =1Ç x =1’ is

  

 ( ) 1 1( ), since the two operators 

commute.   Moreover, Q2 says that the quantum mechanical representations for 

‘

  

Sz =1È x =1’ is

  

  + 1 1 -  ( ) 1 1( ).  

12.4 Non-existent Properties 

Although CH allows a realist understanding of quantum mechanics, it does not 

follow EPR in attributing quantum mechanically incompatible properties to a system.  

Griffiths gives an instructive story about what happens if one insists that 

  

P Ç Q  is 

defined even if P and Q are incompatible.  Consider a spin-half particle, and to simplify 

the notation, let 

  

Z +[ ] stand for the projector associated with 

  

Sz = 1, and similarly for 

other projectors. Suppose now that the composite property 

  

Sz = 1Ç Sx =1 existed.   Then 

its corresponding projector would have to project onto a subspace 

  

P  of the two-

dimensional Hilbert space H of the spin-half particle.  However, no such subspace can 

exist.  For, no one-dimensional subspace 

  

i  is associated with both 

  

Sz = 1 and 

  

Sx =1; all 

                                                 
5 In order to avoid clutter, in the future we shall omit the brackets when possible. 
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the one-dimensional subspaces are, as it were, already taken.  This leaves only two 

subspaces, namely, H itself and the zero-dimensional subspace 

  

0 containing only the zero 

vector.   Since neither 

  

Sz = 1 nor 

  

Sx =1 are always true, 

  

P ¹ H .  If 

  

P = 0, then  

  

Sz = 1Ç Sx =1          (12.4.1) 

could never be true, and consequently  

  

Sz =1Ç Sx = -1         (12.4.2) 

could never be true as well.  Since the disjunction of two false sentences is false,  

  

Sz =1Ç Sx =1( )È Sz =1Ç Sx = -1( )      (12.4.3) 

is false as well. Now (12.4.3) is logically equivalent to 

  

Sz = 1Ç Sx = 1È Sx = -1( )       (12.4.4) 

which must, therefore, be always false. However, the part in brackets is always true 

because the corresponding projector is the identity projector I in H, and consequently  

  

Sz = 1 must always be false.  But this cannot be right because at times 

  

Sz = 1 is true.  If 

we assume that the Hilbert space H contains all the information about the particle, that is, 

if we assume that quantum mechanics is complete, then 

  

Sz = 1Ç Sx =1 cannot be assigned 

any meaning at all because nothing in H can be associated with it.  Moreover, since 

conjunction can be defined in terms of disjunction plus negation and vice versa, 

  

Sz = 1È Sx =1 is meaningless as well.  In sum, the penalty for logically connecting non-

commuting properties is loss of meaning.  

The commuting requirement has interesting consequences for the measurement 

problem.  As we saw earlier, the measurement problem consists in the fact that according 

to TDSE the outcome of measurement is a superposition like  
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¢ Y = c i y i Ä c i

i

å ,        (12.4.5) 

where 

  

y i  and 

  

c i  are eigenstates of the observed system and the measuring device 

respectively.  However, we should note that 

  

¢ Y ¢ Y  does not commute with any 

  

c i c i , and consequently once 

  

¢ Y ¢ Y  obtains it is meaningless to ask whether any of 

the 

  

c i c i , or any disjunction of the 

  

c i c i , obtain.  In other words, once the 

combination atom-Geiger counter-hammer-cyanide container-cat has reached the 

measurement superposition TDSE entails, it makes no sense to ask whether the cat is 

alive or dead, or even to say that the cat is alive or dead.      

12.5 Quantum Histories 

Consider a system S and its configuration space H.  A history a is a tensor product 

of projectors of H such that 

  

a = P1[ ]Ä ... Ä Pn[ ],        (12.5.1) 

where 

  

Pi[ ] is the projector associated with the property 

  

Pi.  History a is itself a projector 

in the history Hilbert space   

  

( 
H = H1 Ä ... Ä Hn , where Hj is S’s configuration space at time 

  

t j .  Intuitively, a says that S holds properties P1,…,Pn at times 

  

t1,...,tn .  As a sample 

space for properties at one time is a decomposition of I, the identity projector for H, into 

mutually orthogonal property projectors, so a sample space for histories is a 

decomposition of   

  

( 
I , the identity projector for   

  

( 
H , into mutually orthogonal history 

projectors, so that 

 
  

  

a =
( 
I 

a

å .           (12.5.2) 

The rules for negation, conjunction, and disjunction for histories are the same as those for 

properties at a single time.  Hence, given two histories a and b, 
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~ a =
( 
I - a

aÇ b = ab

aÈ b = a + b - ab.

          (12.5.3) 

As before, conjunction and disjunction are defined only if a and b commute, that is, only 

if 

  

ab = ba.  Typically, a and b commute only if all of their component projectors 

associated with the same time commute; however, if the two histories are orthogonal 

(

  

ab = ba = 0), then they commute even if not all of their component projectors associated 

with the same time commute. The histories that are sample points are elementary 

histories, while their combinations in terms of conjunction, disjunction, and negation 

(events of more than one sample point) are compound histories. Since they are 

orthogonal, elementary histories are mutually exclusive, and therefore they differ from 

each other by at least one property projector.  The event algebra is a Boolean algebra 

under the operations of conjunction and disjunction.  

EXAMPLE 12.4.1 

Let 

  

a = X +[ ]Ä Z +[ ]Ä Y -[ ] and 

  

b = Y +[ ]Ä Z +[ ]Ä X -[ ] be two histories of 

the spin-half system S made of one particle.6   Then 

  

aÇ b and 

  

aÈ b are not defined 

because a and b do not commute, since the first and third projectors do not commute and 

the two histories are not orthogonal.  

The chain operator for a history a is  

  

Ca = PnU tn ,tn-1( )Pn-1 × × ×U t1, t0( )P0 ,       (12.5.4) 

where 

  

P0,...,Pn  are the property projectors of a and 

  

U ti,t j( ) is the time evolution 

                                                 
6 To avoid clutter, we often dispense with the subscripts when the temporal ordering of 

the system’s properties is clear.  
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operator.7  The probability of a history occurring is given by    

  

Pr(a) = Tr CaC
+

a( ),        (12.5.5) 

where 

  

C+
a  is the adjoint of 

  

Ca .8 

EXAMPLE 12.4.2 

Let us determine the probability that an electron originally in state 

  

z  will have 

the history 

  

a = Z +[ ]Ä X +[ ]Ä Y -[ ] if the Hamiltonian is zero.  A simple calculation 

gives 

  

Y -[ ]= ȳ ȳ =
1

2

1 i

-i 1

æ 

è 
ç 

ö 

ø 
÷ ; similarly, 

  

X +[ ]=
1

2

1 1

1 1

æ 

è 
ç 

ö 

ø 
÷ , and 

  

Z +[ ]=
1 0

0 0

æ 

è 
ç 

ö 

ø 
÷ .  

Consequently, the chain history operator is 

  

Ca =
1

2

1 i

-i 1

æ 

è 
ç 

ö 

ø 
÷ 

1

2

1 1

1 1

æ 

è 
ç 

ö 

ø 
÷ 

1 0

0 0

æ 

è 
ç 

ö 

ø 
÷ =

1

4

1+ i 0

1- i 0

æ 

è 
ç 

ö 

ø 
÷ .   

Finally,  

                                                 
7 Notice that the projector corresponding to the earliest time is on the right.  Note also 

that when the Hamiltonian is zero, the evolution operator becomes the identity operator, 

and can therefore be ignored. 

8 Actually,

  

Tr CaC
+

a( ) is not the probability, but the weight (the unnormalized probability, 

as it were) of a.  The general formula is 

  

Pr(a) =
Tr CaC

+
a( )

Tr P0[ ]
, where

  

P0[ ] is the initial 

projector of the history.  However, since we are dealing only with orthonormal bases and 

pure states, 

  

P0[ ]always projects onto a one-dimensional subspace.  Hence, its trace is 

always equal to one, and therefore we can use the simpler formula.  In the literature, there 

are several equivalent formulas for history probability.  We look at some of them in 

exercise 12.5. 
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Pr(a) = Tr
1

4

1+ i 0

1- i 0

æ 

è 
ç 

ö 

ø 
÷ 

1

4

1- i 1+ i

0 0

æ 

è 
ç 

ö 

ø 
÷ 

é 

ë 
ê 

ù 

û 
ú =

1

4 . 

The idea now is to think of quantum mechanics as a stochastic or probabilistic theory: 

(12.5.5), which is equivalent to Wigner’s formula, is used to assign probabilities to 

quantum histories much in the same way in which classical stochastic theories assign 

probabilities to sequences of coin tosses or even to a truly indeterministic sequence of 

events.9   

12.6 Restrictions on Histories 

At this point, however, we must make sure that what we introduced in (12.5.5) is 

really a probability, that is, it satisfies the appropriate axioms.  There are many equivalent 

axiomatic formulation of probability.  Here is a simple one consisting of three axioms: 

1. Positivity:

  

0 £ Pr(a) ; 

2. Additivity: if a and b are any two mutually exclusive events, then 

  

Pr a Úb( )= Pr a( )+ Pr b( ); 

3. Normalization: 

  

Pr(e) =1
e

å , where e is a sample point. 

We can show that (12.5.5) satisfies positivity.  An operator O is positive just in case the 

elements of its main diagonal are positive.  However, given any O such that 

  

Oy = j , 

  

y ˜ O *Oy = j j ³ 0,        (12.6.1) 

and therefore 

  

˜ O *O  is a positive operator, which entails that its trace is positive. 

However, it turns out that (12.5.5) does not always satisfy additivity because of 

interference effects among histories, and this requires that the Boolean algebras of events 

on which (12.5.5) can be applied must be restricted: histories cannot be lumped together 

                                                 
9 For Wigner’s formula, see appendix five. 
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haphazardly if we want them to obey the rules of probability.  The restriction amounts to 

the elimination of interference effects so that any two mutually exclusive histories can 

evolve separately.  As a result, probabilities are assigned only to histories belonging to a 

family F if  

  

Tr C+
aCb( )= 0,        (12.6.2)  

where a and b are any two different histories belonging to F.  In effect, (12.6.2) 

guarantees additivity for history probabilities.  If, following Griffiths, we define the inner 

product for operators as 

  

A,B = Tr A+B( ),        (12.6.3) 

then a family is consistent if its history chain operators are orthogonal.10 

It can also be shown that (12.5.5) satisfies normalization. 

EXAMPLE 12.6.1 

Let us investigate whether the three spin-half histories with zero Hamiltonian 

  

a = Z +[ ]Ä Y +[ ]Ä X +[ ], 

  

b = Z -[ ]Ä Y +[ ]Ä X -[ ], 

  

c = Z +[ ]Ä Y -[ ]Ä X +[ ] 

form a consistent family.  Since 

  

Tr ˜ C a
*Cc( )¹ 0, and a, b, and c fail to form a consistent 

family.  Note that the orthogonality of a and c does not entail that their chain operators 

are orthogonal as well. 

Determining family consistency can be very laborious, especially when it comes 

                                                 
10 For a proof that (12.6.2) entails additivity, see Griffiths, R., (2002): 140.  It turns out 

that (12.6.2) is a sufficient but not a necessary condition for additivity.  
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to checking the orthogonality of history chain operators.  Nevertheless, there are 

shortcuts. One is that if two histories have orthogonal first or last property projectors, 

then their chain operators are orthogonal as well.  Hence, the spin-half family made up of   

  

d = Z +[ ]Ä Y +[ ]Ä X +[ ], 

  

e = Z -[ ]Ä Y +[ ]Ä X +[ ],       (12.6.4) 

  

f = Z +[ ]Ä Y -[ ]Ä X -[ ] 

is consistent because any two of the histories have orthogonal first or last members.  For 

example, the first members of d and e are orthogonal since 

  

Z +[ ]× Z -[ ]= 0 . 

EXAMPLE 12.6.2 

We can use the above shortcut to come up with a family of histories for a simple 

measurement.  Suppose we shoot a spin-half particle in state 

  

x  through a SGZ device 

and that the particle goes through positions 

  

l1 and 

  

l2 on its way to the device, eventually 

emerging from it in position 

  

l +  or 

  

l -.  If 

  

l +  and 

  

l - are sufficiently far, so that the 

wave packets overlap only minimally, then the respective vector states will be effectively 

orthogonal, thus representing mutually exclusive alternatives.  Hence, we may consider 

  

l +  and 

  

l - as ‘pointers’ correlated with the values of 

  

Sz .  One can then construct the 

following family made up of two histories 

  

a = X +[ ] l1[ ]Ä Z +[ ] l2[ ]Ä Z +[ ] l +[ ] 

and 

  

b = X +[ ] l1[ ]Ä Z -[ ] l2[ ]Ä Z -[ ] l -[ ].11 

                                                 
11 Actually, the family is not complete, and one should add 

  

c = I - X +[ ] l1[ ]{ }Ä I Ä I .  

However, since we may set 

  

Pr(c) = 0, this history can be discarded without any loss. 
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The two stories are orthogonal because their last members are, and they show the 

measurement correlations between z-spin values and particle position.  

12.7 The Risks of Joining Families and Boolean Algebras 

Typically, families cannot be mixed: jumping from a family to another in the 

same description of a physical process is forbidden.  This prohibition marks most clearly 

the difference between the quantum and the classical world, and therefore we should look 

at it a bit more closely. Two elementary histories in the same family are incompatible in 

the sense of being mutually exclusive: if one is true, the others must be false.  In other 

words, the penalty for combining them is logical inconsistency, a statement of the form 

  

AÇ ~ A.  This is not peculiar to quantum mechanics; if it is true that that at a given time 

the x-component of the spin of an electron or a billiard ball has a certain value, than it is 

false that at that same time it has a different value.   

However, histories belonging to different families are incompatible in the sense 

that their conjunction generates not a logically inconsistent statement but one that is 

neither true nor false, that is, a string of symbols that is no statement at all. To put it 

differently, the penalty for combining histories from different families is 

meaninglessness.  The reason is that every consistent family constitutes a Boolean 

algebra of history projectors that acquire probabilities only within that algebraic 

framework since, properly speaking, any sort of probabilistic reasoning depends on a 

sample space. Quantum mechanics is peculiar in that different algebras of histories 

cannot be joined unless certain conditions, ultimately arising from the fact that operator 

multiplication is not commutative, are satisfied.  So, absent such conditions, if a and b 

belong to different families, any statement involving both of them has no probability 
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attached to it (no probability can be defined for it) and is therefore meaningless.  In sum, 

quantum theoretical statements are probabilistic (“true” means ‘having probability one’ 

and “false” means ‘having probability zero’), and therefore they presuppose a sample 

space.  However, typically the non-commutative property of operator multiplication 

prevents the construction of a single sample space from those of two families unless 

certain special conditions are satisfied.  It can also be shown that the prohibition against 

joining families allows the adoption of non-contextual weak value determinism without 

impinging on the KS theorem (Griffiths, R., (2002): ch. 22).  

12.8 A Comparison of CH with the Orthodox Interpretation 

Griffiths and Omnès use a thought experiment with a Mach-Zehnder 

interferometer to highlight the advantages of CH over the standard interpretation.12  A 

photon initially at a goes through a beam splitter S1, is deflected by the mirrors M1 and 

M2, and eventually is detected by C or D, which undergo a macroscopic change of state 

by, say, clicking.  The second beam splitter S2 is not present in this run. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 

                                                 
12 Griffiths, R., and Omnès, R., (1999). 
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Using obvious symbolism, the orthodox representation of this story is as follows: 

  

a Ä C Ä D Þ
1

2
c + d( )Ä C Ä D Þ

1

2
C* Ä D + C Ä D*( )  (12.8.1) 

where 

  

C*  is the state of C clicking, and the arrows indicate the linear temporal 

development provided by TDSE.  As soon as the system arrives at entanglement between 

particle and detector, the state function collapses and one and only one of the two 

alternatives is realized.  Supposing that the final state of the system is, for example, 

  

C* Ä D , one still cannot know what happened before because of the bizarre 

superposition in the intermediate step.  In other words, retrodiction from experimental 

results is impossible.  However, Griffiths and Omnès note, retrodiction is constantly used 

by particle physicists, who assume not only that measurements accurately reflect the state 

of affairs just before measurement, but even extrapolate which path a particle has 

followed before the measurement. 

By contrast, CH could employ the two mutually exclusive histories 

  

aCD Ä cCD Ä C*D        (12.8.2)
 

and 

  

aCD Ä dCD Ä CD*
,        (12.8.3)

 

to each of which it attributes probability 1/2.13  Here, not only is the collapse postulate 

unnecessary, but if the final state of the system is 

  

C*D, we know which history has been 

actualized, and therefore we can say that the particle went along path c, with the result 

that we need not say, as Griffiths and Omnès flippantly put it, that “experimenters don’t 

take enough courses in quantum theory”  (Griffiths, R., and Omnès, R., (1999): 29).  

                                                 
13 As before, to avoid clutter, we occasionally write

  

P  instead of 

  

P[ ]. 
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It is true that CH also allows histories in which it is meaningless to ask which path 

the photon followed, such as 

  

aCD Ä
1

2
c + d[ ]CD Ä C*D        (12.8.4) 

and its counterpart in which D clicks.  However, one need not use them.  Hence, while in 

classical physics a single description allows one to answer all the meaningful questions 

about a system, largely in quantum mechanics what counts as a meaningful question 

depends on the description employed. 

Suppose now that we insert a second beam splitter S2 at the intersection of paths c 

and d near the detectors C and D, and that we alter the optical path lengths so that S2 will 

produce the unitary transitions 

  

c Þ
1

2
e + f( )        (12.8.5) 

and 

  

d Þ
1

2
- e + f( ),        (12.8.6) 

with the result that the two 

  

e ’s have opposite phases, and therefore cancel each other 

out.  The outcome is that all the photons will always travel along f and never along e, so 

that D will record hits all the times.  At this point, our classical intuitions push us to 

wonder whether before getting along f the photon went along c or d.  The corresponding 

histories are 

  

h = a[ ]Ä c[ ]Ä f[ ]        (12.8.7) 

and  

  

i = a[ ]Ä d[ ]Ä f[ ].        (12.8.8) 
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Can the two histories be logically connected?  For example, can one sensibly ask whether 

  

h È i( )Ç ~ h Ç i( ), that is, the photon went along c or d but not both, or even sensibly 

state that 

  

h Ç i, that is, the photon went along both c and d, as one occasionally reads?  

According to CH, the answer is negative because the chain operators for the two histories 

are not orthogonal, and therefore 

  

h  and i cannot belong in the same consistent family.  

12.9 The Histories of EPR 

In order to discuss the EPR paper with the help of CH, we need to introduce two 

notions, that of history extension, and that of support of a family.  Moreover, we need to 

find out what are the conditions for joining two families into a new family.  Suppose that 

  

a = P1 Ä ...Ä Pn  and we want to extend a to a time later than 

  

tn .  All we need to do is to 

set I, the identity operator, for that time:

  

a = P1 Ä ...Ä Pn Ä In +1.  Since I corresponds to a 

property that is always true, in effect we have added nothing to our original story, 

although, formally, it now extends to a time it did not cover before.  The same procedure 

applies if the added time is anywhere in the history.   

Consider now the histories  

  

a = Z +[ ]Ä Y +[ ]Ä X +[ ],       (12.9.1) 

and 

  

b = Z +[ ]Ä Y -[ ]Ä X -[ ].       (12.9.2) 

Since   

  

a + b ¹
( 
I , they do not constitute a complete family F and that another history c 

would have to be added to obtain F.  However, it may turn out that they are the only 

histories we care about, in which we may set 

  

Pr c( )= 0  and take into account only the 

support of F, namely all and only the histories whose probability is greater than zero.  

Sometimes, families can be joined.  Not surprisingly, two consistent families 
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A = ai{ } and 

  

B = b j{ } are compatible (can be joined) if and only if the following two 

conditions are satisfied.   

First, the histories belonging to the two families must commute: for all i and j, 

  

ab = ba.  This in effect guarantees that a and b can be linked by logical connectives like 

  

aÇ b and 

  

aÈ b.   Second, for all a, b, c, d, 

  

Cab ,Ccd = 0 , where 

  

a ¹ c  belong to A and 

  

b ¹ d  belong to B.  In other words, the chain operators of the products of different 

histories from the two families must be orthogonal.  This condition entails additivity.  If 

  

ab = 0 or 

  

cd = 0  (if the histories in the two families are orthogonal), then the second 

condition is automatically satisfied.   

We can now address EPR by utilizing histories as close as possible to what its 

proponents presumably had in mind.  Consider, then the family Z with support 

  

Y0Za
0 Ä

za
+Za

0zb
- Ä Za

+zb
-

za
-Za

0zb
+ Ä Za

-zb
+

ì 
í 
î 

,       (12.9.3)  

where 

  

Za
0  is the initial state of an SGZ, 

  

za
+ indicates that particle a has the property 

  

Sz = 1, 

  

Za
+  indicates that the SGZ has recorded 

  

Sz
a =1 by absorbing a, and similarly for 

the other symbols.  Here we have two histories with a common beginning and a split 

denoted by the bracket.  Note that particles a and b really have the appropriate z-spin 

value even before the measurement, and that the measurement correctly correlates the 

measurement returns on a with the unmeasured value of z-spin on b, and vice versa. 

Consequently, there is no need to appeal to non-locality.  

Consider now the family X with support  

  

Y0Xa
0 Ä

xa
+Xa

0xb
- Ä Xa

+xb
-

xa
-Xa

0xb
+ Ä Xa

-xb
+

ì 
í 
î 

,      (12.9.4) 
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where the symbols have obvious meaning.  To be allowed to say that a and b have both 

sharp x-spin and z-spin values, it must be possible for the two families Z and X to be 

joined to form a single family for, as we saw, connecting histories from different families 

may lead to meaniglessness.  In this case, the two families can be joined because the 

histories in Z are orthogonal to those in X, since 

  

Y0Xa
0( )× Y0Za

0( )= 0 .14         (12.9.5) 

However, the joint probability of any history in Z with any history in X is zero, and 

therefore EPR was wrong in arguing that a and b have both sharp and opposite x-spin and 

z-spin values. 

Still, CH seems to intimate that the probability that a and b have both sharp and 

opposite x-spin and z-spin values is zero.  If so, one might suspect that Einstein lost the 

battle but won the war; since only meaningful sentences can have probability zero, one 

could infer that Bohr’s position that talk of a particle having simultaneous non-

commuting properties is meaningless is wrong.  In other words, does the fact that Z and X 

can be joined into a single family ultimately vindicate Einstein’s position that talk of a 

particle having simultaneous non-commuting properties makes perfect sense?  If so, then 

the EPR paper was right in holding that quantum mechanics is incomplete since, as we 

saw above, there is no room in Hilbert space for the conjunction of non-commuting 

operators.   

CH addresses the problem by introducing the notion of dependent event.  
                                                 
14 

  

Xa
0[ ] and 

  

Za
0[ ] are orthogonal because a SGX and a SGZ differ macroscopically (their 

orientations are perpendicular).  Since they are multiplied by the same operator, (12.9.5) 

holds. 
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Consider the family Z in its entirety.  It consists of  

  

Y0Za
0 Ä

za
+Za

0zb
- Ä Za

+zb
-

za
-Za

0zb
+ Ä Za

-zb
+

ì 
í 
î 

,        (12.9.6) 

namely, the support for Z, and a third history to which we assign probability zero, 

namely,  

  

I - Y0Za
0( )Ä I Ä I .        (12.9.7) 

Note that (12.9.7) says nothing at all about the spin components of a and b (I corresponds 

to the universal property).  Hence Z’s Boolean algebra requires that events 

  

Za
+zb

- and 

  

Za
-zb

+ 

be logically dependent on 

  

Y0Za
0  (the first event of the only histories in which they 

appear) in the sense that one may sensibly ask what is the probability of them obtaining 

only in the context of histories beginning with 

  

Y0Za
0 .  In other words, statements “

  

Za
+zb

-” 

and “

  

Za
-zb

+” are meaningful only contextually, given that 

  

Y0Za
0  obtains.  Similarly, 

  

Xa
+ xb

- 

and 

  

Xa
- xb

+ depend on 

  

Y0Xa
0.  However, since

  

Y0Za
0  and 

  

Y0Xa
0 are mutually exclusive, it 

follows that “b’s z-spin component has such and such value” and “b’s x-spin component 

has such and such value” can be meaningful only in mutually exclusive contexts.15  

12.10 A Review of CH 

The basic idea behind CH is to consider quantum mechanics a classic stochastic 

theory providing the values of the physical properties a system actually has at a given 

time or at different times. Compliance with the laws of probability is obtained by the 

construction of Boolean algebras culminating in the notion of consistent family.  CH lets 
                                                 
15 Of course, in a way this is nothing new: the end of the EPR paper expressly argues 

against this move.  CH has an interesting treatment of the counterfactuals apparently 

involved in the EPR paper; see section 24.2 of Griffiths, R., (2002). 
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one adopt non-contextual weak value determinism while avoiding non-locality, a feat that 

Bell’s theorem had rendered doubtful, and it treats collapse as a mere computational 

device with no physical counterpart.  Hence, measurement is dethroned from the central 

position it enjoys in the orthodox interpretation, and therefore all the (for many) 

unpalatable appeals to the observer or even to consciousness can be eliminated.  

CH allows great flexibility in the description of a system because within the 

confines dictated by the consistency requirements the choice of the times and the 

properties with which a history deals is arbitrary.  This has startling results not only 

because not all synchronous quantum histories of a system can be consistently combined 

(a feature present in classical histories as well), but also because synchronous quantum 

histories of a system belonging to incompatible families cannot be meaningfully 

combined.  This entails that, in contrast to a classical system, a quantum one is not 

amenable to a single comprehensive description and therefore can be considered from 

different and typically non-combinable perspectives.  However, the same physical 

question will receive the same answer in each different perspective, thus showing that 

none is more basic or closer to reality than any other. 

It may prove helpful to think about CH in terms of the debate between Einstein 

and Bohr.  CH partially agrees with Einstein in adopting property realism, albeit in a 

weakened form, and rejecting non-locality.  However, contrary to the EPR paper, CH 

limits our ability to talk about a system by restricting it to consistent families, and with 

Bohr treats the attribution of non-commuting properties to a system as meaningless.  In a 

way, CH can be seen as close to Bohr’s views, for one might think of the idea of 

consistent families and their relations as a refinement of Bohr’s idea of complementarity.  



 294 

Nevertheless, in agreement with Einstein, CH dethrones measurement and the role of the 

observer from the central position they enjoy in standard quantum mechanics.  True, what 

family one chooses in the description of a system is up to the physicist, but this is not 

different from the fact that in a photograph the point of view is up to the photographer.  

What is peculiar is that, because operator multiplication is not commutative, not all such 

photographs can be combined to produce a unique overall visual representation of the 

object.     

The flexibility CH allows in choosing histories may seem to generate some 

difficulties.  For example, a history in which the projector corresponding to (12.4.5) 

occurs, that is, a history in which Schrödinger’s cat appears, although not forced on us, is 

still permissible.  But, one might object, presumably one would want to have such a 

history forbidden.  For if superposition has a physical counterpart, while one might 

swallow its application to a quantum particle, as in the CH equivalent of (12.8.1), one is 

unlikely to do the same with respect to a macroscopic object like a cat.  However, as we 

saw, for CH the cat is neither dead nor alive, nor dead and alive; indeed, as this applies to 

any cat-property one might want to associate with 

  

c i c i  in (12.4.5), it turns out that 

such a history has times when it cannot say anything about the cat.  That is, in such 

history, at times when superposition occurs, any talk about the cat’s properties is mere 

nonsense, and therefore a fortiori nothing funny is said about the cat.16 This, however, 

seems to introduce a further difficulty, namely that in such a history there are times when 

the cat seems to vanish, as it were.  But the cat, we should remember, is a macroscopic 

object: surely, one might insist following Einstein and Shrödinger, in any sensible 

                                                 
16 I owe this point to an exchange with R. B. Griffiths. 
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description of the world Trickster must be in the box at all times with all its proper feline 

properties.  

A related problem has to do with the fact that there is, at least at the macroscopic 

level, only one history, only one actual sequence of events, even if, of course, there are 

many possible histories.  But CH cannot tell us which history is real, and which is, as it 

were, just a historical fable.  True, to each history CH associates a probability, but even 

so, the theory is unable to tell us which shall emerge into reality.  However, this criticism 

seems too harsh.  After all, for CH the sequence of events in a history is, at least 

epistemologically, stochastic, which intimates that the selection of the actual history is, at 

least epistemologically, random.  If so, it is unreasonable to expect CH to tell us more 

than the probability of each history and determine the causal chain, if it exists at all, that 

actualized one history rather than another.  Even at the macroscopic level, because of the 

complexity of the causes involved, the best one can do is to provide probabilities when it 

comes to the histories of roulette’s outcomes, leaving aside the issue of what caused one 

outcome rather than another. 
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Exercises 

Exercise 12.1 

Consider a fair coin tossed three times in a row. Determine the sample space.  How many 

elements will the event algebra have?  

Exercise 12.2 

What is 

  

3Ç 4  equivalent to, in terms of disjunction and negation? [Hint.  Look at 

example 12.2.2]   

Exercise 12.3 

Using rules Q1 and Q2, show that the following equalities hold: a: 

  

P Ç Q = QÇ P ; b: 

  

P È Q Ç R( )= P È Q( )Ç P È R( ). 

Exercise 12.4 

Do 

  

a = X +[ ]Ä Z -[ ]Ä Y -[ ] and 

  

b = Y +[ ]Ä Z +[ ]Ä X -[ ] commute? 

Exercise 12.5 

1. Show that (12.5.5) can be written as 

  

Pr(a) = Tr CarCa
+( ). [Hint.  Look at the rightmost 

factor in 

  

Ca .  Then, remember that a projector is identical to its square.]  

2. Show that (12.5.5) can be written as 

  

Pr(a) = Y Ca
+Ca Y . [Hint.  Start with the result 

of the previous exercise, cyclically rotate the argument of the trace operator, and then 

remember what 

  

Tr rA( )is equal to.] 

3. Prove that when the Hamiltonian is zero (and the system is conservative) the 

evolution operator becomes the identity operator.  

4. Verify that in the example above the history probability we got agrees with the 

orthodox interpretation concerning the probability of obtaining 1, 1, and 

  

-1 were one 
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to perform the appropriate measurements in succession.   

5. Is (4) true in general? [Hint.  It turns out that 
  

  

Pr(a) = Tr CaCa
+( )= Tr

) 
C a

) 
C a

+( ), where 

  

  

) 
C a =

) 
P n

) 
P n-1 × × ×

) 
P 0 , the product of the Heisenberg operators corresponding to the 

Schrödinger operators in (12.5.4), and this opens the way for the use of Wigner’s 

formula.  See appendix 4].  

Exercise 12.6 

In example 12.6.1 , show that 

1. a and c are orthogonal. 

2. 

  

Ca,Cb = 0. 

3. 

  

Ca,Cc ¹ 0 . 

Exercise 12.7 

Show that if two histories a and b have orthogonal first or last projectors, then they are 

orthogonal. 

Exercise 12.8 

Show that the chain operators for

  

h  (12.8.7) and 

  

i  (12.8.8) are not orthogonal. [Hint.  

Notice that the Hamiltonian is not zero, and therefore we use the evolution operators that 

need to be applied on density operators represented as ket-bra.] 
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 Anwers to the Exercises 

Exercise 12.1 

The sample space is made up of 8 points, and therefore the event algebra has 

  

28 elements. 

Exercise 12.2 

It is equivalent to 

  

~ ~ 3È ~ 4( ): it is not the case that a number different from 3 or 4 

came up. 

Exercise 12.3 

a: Since P and Q must commute, by rule Q1 we get 

  

PQ = QP ;  

b: By rules Q1 and Q2, 

  

P È Q Ç R( ) is represented by 

  

P + QR - PQR .  

  

P È Q( )Ç P È R( ) is represented by 

  

P + Q - PQ( ) P + R - PR( )= P 2 + PR + P 2R + QP + QR + QPR - PQP - PQR + PQPR = P + QR - PQR

once we keep in mind that the operators commute and a projector is the same as its 

square.  

Exercise 12.4 

Yes, because their second projectors are orthogonal. 

Exercise 12.5 

1.

  

Tr CaCa
+( )= Tr PnU tn ,tn-1( )Pn-1 × × ×U t1,t0( )P0P0U t0,t1( )× × × Pn-1 × × ×U tn-1,tn( )Pn[ ].  Since 

  

P0P0 = P0P0P0 = P0rP0 , we obtain 

  

Tr CaCa
+( )= Tr CarCa

+( )= Pr(a)   

2.

  

Tr CarCa
+( )= Tr rCa

+Ca( )= Ca
+Ca = Y Ca

+Ca Y .  

3. When the system is conservative,   

  

U t,t0( )= e
-iH ×(t- t0 )

h , and therefore when 

  

H = 0 , 

  

U t,t 0( )= I . 

4.  Since the system is in state 

  

z , 

  

Sz = 1 with probability 1; the second measurement 
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will return 

  

Sx =1 with probability 1/2 and the state vector will collapse on 

  

x ; the third 

measurement will return 

  

Sy = -1 with probability 1/2.  Hence, the probability of 

obtaining the three returns is 

  

1´
1

2
´

1

2
=

1

4
.  

5.  Yes, because 
  

  

Tr
) 
C a

) 
C a

+( )= Tr
) 
C ar

) 
C a

+( ) is Wigner’s formula.  

Exercise 12.6 

1. a and c are orthogonal because their second members are. 

2.  

  

Cb = X -[ ] Y +[ ] Z -[ ].  Hence, 

  

Ca,Cb = Tr Ca
+Cb( )= Tr Z +[ ] Y +[ ] X +[ ] X -[ ] Y +[ ] Z -[ ]( )= 0 . 

3. 

  

Ca,Cc = Tr Ca
+Cc( )= Tr Z +[ ] Y +[ ] X +[ ] X +[ ] Y -[ ] Z +[ ]( ) 

  

= Tr Z +[ ] Y +[ ] X +[ ] Y -[ ]( )¹ 0 . 

Exercise 12.7 

Let 

  

Ca = PnU tn ,tn-1( )Pn-1 × × ×U t1, t0( )P0  and 

  

Cb = QnU tn , tn-1( )Qn-1 × × ×U t1, t0( )Q0. Then, 

  

Tr Ca
+Cb( )= Tr P0U t0,t1( )× × × Pn-1U tn-1,tn( )PnQnU tn,tn-1( )Qn-1 × × ×U t1,t0( )Q0[ ].  Hence, if 

  

PnQn = 0  the result is immediate; if 

  

Q0P0 = 0  the result is obtained by cyclical rotation.  

Exercise 12.8 

  

Ch = f f U t3,t2( )c c U t2, t1( ) a a , and 

  

Ci = f f U t3,t2( ) d d U t2, t1( ) a a .  Hence, 

  

Tr Ch
+Ci( )= Tr a a U t1,t2( )c c U t2,t3( ) f f f f U t3,t2( ) d d U t2,t1( ) a a[ ].  Since 

  

U t2,t1( ) a a =
1

2
c + d( ) a , after a little algebra we get 

  

Tr Ch
+Ci( )=

1

2
d c Tr a a U t1,t2( )c c U t2,t3( ) f f f f U t3,t2( ) d a[ ].  Continuing 
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in the same way, we finally obtain 

  

Tr Ch
+Ci( )=

1

2
d c c d ¹ 0, and therefore the two 

chain operators are not orthogonal.  
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