Chapter 11
M easurement Problem I1: theModal I nter pretation, the Epistemic I nter pretation,
theRelational I nter pretation, Decoher ence, and Wigner’s For mula.

Previously, we have considered approaches to the measurement problem that deny
either the universal validity principle, or the observer’ sreliability principle. Wenow turnto
approachesthat reject the remaining two principlesor noneat all. We start with the modal
interpretation, which rejects EE. Thenweturn to two viewsthat reject the absolute state
principle, namely, the epistemic and therelational interpretations. Finally, we consider an
attempt at solving the measurement problem without denying any of the four principlesthat
are necessary to its production, namely the decoherence approach. However, before
tackling these views, we need some more theory.
11.1 The Projection Operator

The Projection Operator of anormalized vector |y) is P, =|y)(y|. If weapply P,
to avector |¥), we obtain
P 1%)= ) ) = M) 11
amultiple of |y) with the coefficient of proportionality A being the scalar product (y V).

The projector operator hastwo important properties, namely

P’=P, (11.1.2)
and
Tr(w)(w[)=1. (11.1.3)

Notethat if /) isabasisvector, then P,|¥) isnothing but the y-component of | ), the

orthogonal projection of |\¥) onto |y ). Hence, if we project |¥) onto the basis vectors

[W1)h-ww, ) We obtain the sum of |¥)’s components, so that
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)= Sl )= 3R, [ ) (114
Suppose now that |¥) = Y c|,). Then, asweknow, ¢, = (y,|¥) and ¢ = (¥|y,).

Hence,
e[ = (Flwi)wi|¥)=(R), (11.15)
that is, the probability of getting the measurement return A, , the elgenval ue associated with
the basis vector |y, ), is obtained by sandwiching the projector of that basis vector.
11.2 The Density Oper ator

Up to now, we have described a system by using its state vector. Such method has
somedrawbacks. For example, neither mixed states, nor subsystems of entangled states,
although of obviousinterest, can be represented by a state vector. Theremedy isto
introduce the notion of density operator, which alowsthe study of quantum systems

uniformly.

Consider amixturewith probability p, p.,..., p, of beinginthe corresponding

state |\¥,),|'¥,)...., |'¥,). Asweknow, if Oisan observable, then
<0>=) p <0, >=2 p(¥|q¥). (11.2.1)
We can now define the density operator

p=2.p[¥ )|’ (1122)

Giventhat P, = |, )('¥,| isaprojector operator and therefore Tr(P,) =1, we may

! 1n other words, to construct the density operator, take the projector for each of the |\Pi ) ,
weighit by the probability that the systemisin state | ¥, ), and sum all the thus weighted

projectors. So, inapurestatesystem, p =|¥)(¥|= P, , namely, ‘¥’ s projector.
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immediately infer that Tr(p)=1. SinceP,” =P, we have
Tr(PO)=Tr(R0)=Tr(RPO)=Tr(POPR), (11.2.3)

wherethe rightmost member is obtained by cyclical rotation on the previousone. From

(11.2.3) weobtain

Tr(RO)=Tr (¥ (¥ [O1¥ (¥, )= (¥ [0 ¥)Tr (), (11.24)
and since Tr(P,)=1it followsthat

Tr(PO)=(¥[Q¥,), (11.2.5)
By plugging (11.2.5) into (11.2.1), we obtain

<0>=> pTr(|¥ X¥[0). (11.2.6)

Now let usnotethat pO= Y p|¥,}('¥, O, and therefore

Tr(pO)="Tr [Z bW (¥ IOJ - (11.2.7)

Since Tr isalinear operator, the trace of asum isthe sum of the traces, and consequently

we can rewrite (11.2.7) as

Tr(pO)= D pTr(|% (¥ [0). (11.2.8)
Finally, by plugging (11.2.8) into (11.2.6) we obtain

<0>=Tr(p0O), (11.2.9)
which expresses O’ s expectation value in terms of the density operator. Inapure state

system such that |¥) = D c;w; ), upon measuring O the probability of obtaining the

eigenvaluel, is (P,), as(11.1.4) shows. Hence, remembering that both P, and the density

operator p are Hermitian, by using (11.2.9) we obtain

" =Tr(pP). (11.2.10)
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Thedensity operator, then, providesauniform procedure for calculating
expectation values and the probabilities of individual returnsfor both pure and mixed state
systems. Moregeneraly, all measurable quantities can be obtained by means of the density
operator. Hence, whilethe state vector can only describe apure state, adensity operator
can describe mixtures aswell, thus providing ageneral way of representing any sort of
system. In addition, while the same quantum state can be described by different state
vectors, it can only be described by one density operator. A systemisinapure stateif and
only if the density operator reducesto aprojection operator, and therefore p® =p.

Now let us construct the density operator for |\¥) =a|ed,)+ B|e,d,) the entangled
state of particles 1 and 2, where {e ) |e,)} isthebasisfor H,, the space of particle 1, and
{d.).|d,)} isthebasisfor H,, the space of particle 2. Keeping in mind that |ab) is

shorthand for |a) ® |b), we have

p=(ale)®|d,)+Ble,) ®|d))a"(&|®(d,|+ B (e, ® (d]), (11.211)
that is,

p=aa’(e)®|d,))(&|® (d,))+ap (&) ®|d,)X(e,|® (d[)+

Bo’ (&) ®[d)X(&] ® (dy])+ BB’ (&) ®|d) (e, ® (i) (11.2.12)

Since (A® B)(C ® D)= AC ® BD, weobtain
p=aa’(e)e|®|d,)d,[)+ap’(&)e|®[d,){d])+
Ba’ (&)@ ®|d){d[)+BB"(e.)(e.| ®|c:)(dk[) (11.2.13)
11.3 Reduced Operators

Suppose that particles 1 and 2 have become entangled, and that we want to make

predictions about observable O of particle 1. Obviously, oneway is appropriately to apply

p, thedensity operator for system 1+2, to O’ sextension. However, it isalso possibleto

construct anew density operator p,, the reduced density operator of 1, which operatesin
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H,, and therefore can be applied to O directly. Thematrix element o, ; of p, isobtained by

performing a partial trace on p with respect to 2:
o, =2.(&kd, |)D(Iej ) dm>]’ (11.3.2)

sothat p, = Tr,(p). Inother words, to obtain p,, we apply the operator Tr to the parts of p

containing basisvectorsfrom 2. Hence, if (11.2.13) givesthe density operator for the

system 1+2, then

py=aa” (e )(&|®Tr|d,)(d,|)+ap"(e)(e| ® Tr|d,)(d,[)+
Bo’ (&) ® Tr|d)(d, )+ BB (&;)(e, ® Tr|d,){d[)

(11.3.2)

and remembering that Tr (| A)(B[)=(B|A) we obtain

e,)(e,|. (11.3.3)

It can be shown that p, isinfact adensity operator and that it containsthe same

py=oa’|e )|+ BB

information about 1 asthe state vector of the compound system.?
11.4TheModal Interpretation

Under thelabel “modal interpretation,” one can group arather varied assortment of
interpretations of quantum mechanicsthat sharetherejection of EE. Thefield of modal
interpretation isfar from settled, with several authorsholding rather different views, and

consequently we shall restrict ourselvesto very general considerations.®

2However, thereis no Hamiltonian operator relating to, say, 1 alone, enabling usto obtain

the evolution equation for p,. By contrast, thereisno such problem for the density

operator of the compound.

% For ageneral account of the modal interpretation, see Vermasas, P. E., (1999).
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Thebasic ideaisthat the standard quantum state never collapsesand that itsjobis
to providethe probabilities, interpreted in terms of ignorance, that the system possesses one
among a certain set of properties. The problem, of course, isto come up with such a set of
propertieswithout falling foul of KS. To thiseffect, typically, one distinguishesthe value
state from the dynamical state of asystem. Thelatter isthe standard, but non-collapsable,
guantum state. Thevalue state, an entity that does not exist in the standard interpretation,
describesthe properties of the system.

One way to understand how this can be made to work is by appealing to Schmidt’s
theorem (the bi-orthogonal decomposition theorem). Consider asystem Smade up of two
digoint subsystemsS and S, and whose Hilbert spaceis H=H, ® H,. Then, for every

statevector |\) in H it isthe case that
|‘P>=Zci|\|1i>®|(|)i>, (11.4.1)
where the set of |y )’ sisan orthonormal basis (the Schmidt basis) in H,, the set of |¢)’san

orthonormal basis (the Schmidt basis) in H, and Z|Ci|2 =1." For example, the singlet

configuration (8.4.1) takesthe form of abi-orthogonal decomposition. (Notethat the

vector expansion hasonly two addendainstead of four). It turns out that the decomposition

isuniqueif and only if no two |c; |2are equal.® For example, thesinglet configuration

* Given (11.4.1), one can easily obtain the reduced density operators p, = Z|Ci |2|\lfi N

and p, = Z|Ci |2|¢i ><¢| |

® The theorem holds only for atwo-component system, although each subsystem can be
made up of further subsystems. When the various|ci |2 arenot all different the

decompositionisdegenerate and things get more complicated. Still, modal interpretations
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(8.4.1) isnot unique because [c,|” = c,|’, and in fact, we saw that (8.4.1) enjoysrotational
invariance. When the decomposition isunigue, the state of Spicks out aunique basis

{w.)-lw,)}, and thereforean observable O, for §. Thesameistrueof S, wherean

observable Q is picked by the state of S. Then, each of the |y )’sisavaue statefor § and
each of the |¢)’savauestatefor S,.

At thispoint, quantum mechanica computation takesover. The dynamical state
|¥) givesaprobability [c,[* that § hasavaluestate [y,) and S, valuestate |¢,). The
adoption of amodification of the eigenstate to eigenvalue link, namely, the value-eigenstate
to eigenvaluelink, guaranteesthat O and Q havethe appropriate eigenvalues. In particular,
when, say, S, isameasuring deviceand § the observed system, the entanglement
between S and S, brought about by TDSE isin fact a bi-orthogonal decomposition. The
rgection of EE alows oneto say that pointers point even when they are represented by a
superposition, thus eliminating the pure state problem. At the sametime, it becomes
possible to say that O has a determinate val ue even before measurement even if we do not
know it. Thestricturesimposed by KS are satisfied by requiring that S; may not possess all
possible propertiesall thetimes. Instead, S, isonly ascribed O and all the properties
obtainable from it by manipulation in termsof thelogical connectives“not”, “or”, “and.”®

Other properties are taken to be undefined. We may call the view just described “the bi-

can be extended to cover such cases. For simplicity, we shall stick to non-degenerate
cases.

® Theselogical connectives are mapped onto a subset of the relevant Hilbert space. There
isnot ageneral agreement on how to do this. We shall see one possible way of doing it
when we study the Consistent Histories I nterpretation, which constructs aBoolean algebra

(section 12.3).
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orthogonal interpretation.” Itspredictionsareidentical to those of standard quantum
mechanics.

The bi-orthogonal interpretation suffersfrom two main problems. First, thesystem
S=S§+ S, must beinapurestate. Second, thefact that Schmidt’stheorem appliesonly to
two-component systemsentailsthat S has property O only from the point of view of S,. In
addition, if we couple S not with S, but with, say, S, the bi-orthogonal decomposition of

the state vector for this new compound will not choose the set of |y )’ s as an orthonormal

basisinH,, and thisreinforcesthe point that asystem’ sproperties (not just their values) are
not intrinsic but relational sincethey exist only in connection to other systems, afact often
referred to as* perspectivalism.” * In addition, when one of the two systemsisa
measurement device, perspectivalism producesatypeof environmental contextuality that
somefind problematic becauseit limitsone’ sability to examinecorrelations. For example,
inthesinglet configuration, where a and b are the two entangled particles and A and B are
the devices measuring them, thetotal systemis abAB. Interms of the biorthogonal
interpretation, the system can bedivided into A and abB or into B and abA, and the
respective pointer positions cannot be correl ated because they correspond to different
perspectives.

However, to a certain degree these two problems can be diminished by altering the
bi-orthogonal version. For, it turns out that when (11.4.1) applies, the bi-orthogonal

decomposition isunique, and

W =Zci|Xi><Xi| (1142)

"Hence, perspectivalism, asit ishere understood, ismore radical than property
contextualism. For thelatter, not the properties but their values are context dependent; for

theformer, the very existence of aproperty iscontextual.
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isthereduced density operator for subsystem S, then |y, ) =|y;). Inother words, in the

Schmidt basisfor § of system S=§ + S,, the matrix of Wisdiagonalized. Hence, instead
of using the bi-orthogonal decomposition theorem, one may usethefamiliar reduced
density operatorsin order to determine §’sproperties. One may then generalizethisresult
intowhat iscalled “the spectral interpretation” and claim that the value states of any system
are provided by the spectral resolution of itsdensity operator. Thisallowsthe consideration
of subsystems S,...,S, that are not part of acomposite Sin apure state, and therefore it
solvesthefirst problem. Moreover, it allowsthe correlation of the properties of the
measuring devices A and B in the EPR case described above, thus diminishing the role of
perspectivalism.

Neverthel ess, some degree of perspectivalismremains. For the spectral
interpretation, like the bi-orthogonal interpretation, allowsthe correlation of propertiesof
subsystems S,...,S, only if such subsystemsaredisjoint. Sinceif asystem Shas more than
two subsystemsthen it can be partitioned into digjoint subsystemsin more than oneway,
correlations can be established only among those properties bel onging to subsystems
involved in one and the same partition. For example, supposethat S=S + S, + S;.

Obviously, one can partition Sinto §,S,,S;, orinto (SS,),S,, and so on. Consequently,

any correlation of propertiesdepends on aspecific partition, and therefore perspectivalism
remains.

The obvious solutionisto claim that thereis one and only one privileged partition
of acomplex system. In other words, one may claim that there are digjoint el ementary
systemsthat are somehow fundamental in nature and that complex systems are built out of
them. Thisisthe basicideabehind theatomicinterpretation. In thisview, the properties of
thefundamental (atomic) systemsare obtained according to the spectral interpretation.

However, the property-projectorsof acompound (molecular) system are obtained
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differently: they arethetensor product of the property-projectors of the component atomic
systems.

In spiteof their ingenuity, it remains unclear whether modal interpretations can
successfully cope with measurement. One can show that if the modal interpretationsare
correct there are some possible measurements that have no outcome. Although no doubt
serious, thismay not be afatal drawback, aslong asthe measurementsin question are
outlandish and utterly unrealistic. Theproblemisthat if the measurement device must be
described in aninfinite dimensional Hilbert space (asit isthe case with apointer allowing a
continuous set of readings), then theseinterpretationsfail to account for measurement
outcomes. Thiscastsdoubtsthat modal interpretations are empirically adequate.

11.5 The Epistemic I nterpretation

Some proposal sto solve the measurement problem are based on the rejection of the
absol ute state principle, the view that the state vector isunqualifiedly about the physical
state of asystem. Themost radical of theseiswhat may be dubbed the “ Epistemic
Interpretation”, according to which the state vector does not describe aphysical system but
our knowledge of its possible experimental behaviour, and its coll apse at measurement
merely refersto achangein such knowledge? In other words, the temporal evolution of

the wavefunction does not describe the evolution of aphysical system but the changeinthe

8 Fuchs, C. A. and Peres, A., (2000), if | understand them correctly. Seealso their reply to
commentsin the samejournal, (September 2000), 11-14 and 90. Similar views are held by
Peierls(Peierls, R. E., (1991)), and Zeilinger (Zeilinger, A., (1999)). Later in hiscareer,
Heisenberg claimed that the state function contains both objective and subjective elements,
the former ones associated with the potentialities present in the system, and the | atter ones
reducibleto theindividual’ sknowledge of the system; thefunction’ scollapseisjust the

result of achangein knowledge (Heisenberg, W., (1971): 53-4).

249



probabilities of possible experimental returnsgiven the observer’ sknowledge. So,
Schrodinger’ scat isnot, asit were, half dead and half alive; rather, the state of
superposition simply represents our imperfect knowledge of the cat’ sstate. Upon
observation, our knowledge, but not the cat, abruptly changes, and thisis represented by
the wave function collapse. Thereisno measurement problem because TDSE and collapse
describe two different and well-defined epistemic states, one before and one after
measurement.

Theideathat the state vector does not really expressaphysical state can be
supported by considering interaction-free measurements. A photon represented by the

wave packet |a) istravelingin aMach-Zehnder interferometer along path a toward abeam

splitter with equal reflection and transmission indexes, so that the probability the photonis

reflected isthe same asthe probability it istransmitted, namely, 1/2 (Fig. 1).

fefp—-o——- o

s _

Figure 1

Suppose atransmitted photon moving along path b isin state |b> and areflected photon

moving along path cisin state |c). On path b thereis adetector B in state |B) when not

activated by aphoton, and in state

B*> when activated by one; on path c there is nothing.
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Let uskeep our attention on B. If after aphoton goes through the beam splitter detector B
isnot activated we can infer that the photon ison path c. For, at the beginning, the state of

the system photon-plus-detector is|a) ® |B); once the photon has gone through the beam

splitter, the state becomes

\Eﬂb>®|8>+|c>®|8>], (115

and eventually

\Eﬂb)@

Sincethe detector isnot activated, the system’ s state has collapsed onto |c)| B), and

B')+|c)®B)] (115.2)

therefore the photon is on path c. Notethat collapse has occurred even if, apparently, since
the photon did not activate the detector, nothing occurred physically; in other words,
nothing interacted with the photon.® Sincethisintimates, albeit it does not prove, that
collapseisnot aphysical event, the epistemol ogical interpretation seemsquite reasonable.

Thebasic problem for the epistemol ogical interpretationisto avoid falling foul of
the distinction between pure and mixed states. Considering the cat definitely dead or
definitely alivejust before we open the box |eads to the wrong prediction by ignoring the
interference between thetwo states. In other words, the epistemol ogical move cannot work
without other assumptions. Fuchsand Peressimply claim that we can say nothing about
the cat in-between observations. However, the cat isamacroscopic object, and it seems
preposterous to hold that we cannot even say that the cat is either alive or dead when we do
not look at it. Of course, it may turn out that we cannot say anything about the cat, but alot
of fancy footwork would be required to make such aview compelling.

One might arguethat the success of quantum mechanicsstrongly intimatesthat it

® For anice discussion of interaction free measurement, see De Weerd, J., (2002).
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correctly describes physical reality. However, Fuchsand Peres claim, such adescriptionis
not required for success; after all, probability theory givesreliableresultswithout describing
the physics of theroulette wheel. Of course, many, from Einstein to Schrodinger and Bell,
have thought of thisview of quantum mechanicsasunduly restrictive. However,
according to Fuchs and Peres, such an attitude is unjustified because the task of scienceis
just to provide acompact description of physical experience and to predict experimental
outcomes. That in the case of classical physicswe have been able to produce amodel of a
reality independent of our experimentsisnice but not strictly necessary. In short, they
adopt astrict positivist position on therole of science.

If the state vector is not about physical systems but about our knowledge of them,
then TDSE depicts some sort of normative psychological dynamics, and, in away,
guantum physics becomes some sort of theory of conditional probabilitiesdealing with our
legitimate expectati onsabout measurement returnsrather than with our actual expectations
about measurement returns.’® In other words, it not a descriptive but anormative discipline,
and in thisrespect not like psychology, which tells us how we think, but like logic, which
tells us how we ought to think. Even so, however, the transformation of aphysical theory
from disciplinethat primarily describestheworking of nature and secondarily tellsus how
we should think about nature to adisciplinethat disregardsthe former task and aims merely
to thelatter isradical and to many utterly unpal atable.

11.6 TheRelational I nterpretation

19 AsEinstein remarked to Schrodinger, thisis“the Born interpretation, which most
theoriststoday probably share. But then the laws of nature that one can formulate do not
apply to the change with time of something that exists, but rather to the time variation of the
content of our legitimate expectations.” (Einsteinto Schodinger, August 9, 1939, in

Przibram, K., (ed.) (1967): 35).
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Another attempt at getting around the measurement problem by rejecting the view
that the state vector isunqualifiedly about the physical state of asystemisthe Relational
Interpretation (RI). Inclassical mechanics, velocitiesmake senseonly inrelationto aframe
of reference (an observer) and the vel ocities of an object with respect to two different
frames of reference need not agree. However, other physical quantities such as length or
duration areinvariant in the sense that their values are the same no matter which frame of
reference we choose. One might view part of the history of 20" century physicsasa
reshuffling of which physical propertiesareinvariant and which are not. According to
Bohr, as Special Relativity showsthat length and duration, invariant in classical mechanics,
areinreality not invariant and thereforetheir valuesare only ascribablerelativeto a
reference frame, so quantum mechanics showsthat the values of quantum dynamical
properties are ascribable only relative to an experimental setup. That not only the values of
guantum dynamical propertiesbut also those of quantum states, quantum relations, and
measurement for aphysical system Sarerelativeto another physical system O (the

observer system) isthe basicideaof RI.*

The observer system can be any system, a
micro-system, a macro-system, an apparatus, or an experimenter, so that “ observer system”
need not, although it might, carry any connotation of consciousness.

Consider the following standard quantum mechanical account. Let Sbeaspin-half

particlewhich at time t; isin astate represented by
[Wo)=2alT,)+b,). (11.6.1)
Suppose we measure S, and the measurement consistsin the interaction between Sand

another system whatsoever O, which for simplicity we assumeto bea SGZ. Suppose also

thet at t, the measurement resultis S, =1, in which case collapse has taken place and

" Here wefollow Rovelli, C., (1996).
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¥ =[T.). (11.6.2)
Let E be the sequence of eventsfrom t, to t,. Then, from O’spoint of view, Swent from
astaterepresented by (11.6.1) to onerepresented by (11.6.2), acquiring S, =14t t,.

Now let usintroduce a new system O' which is not a subsystem of either Sor O,

and which describes E by considering the compound system S+O without interacting with

it (without measuring it). At t,, the state of S+O isrepresented by

@)= (@T,)+ 1))@ 1x0), (11.6.3)

where |y,) isO'sinitial (ready) state. Attime t;, (11.6.3) hasevolvedinto

@) =all,) ®x,)+N,) ®[x), (11.6.4)
which exhibitsthe correlation between S sand O’ svariables. Hence, from the point of
view of O', E isdescribed by (11.6.3)-(11.6.4).

Formulas(11.6.1)-(11.6.2) and (11.6.3)-(11.6.4) offer two different accounts of E.

For example, barring the casewhen a=0 or b=0, (11.6.4) contains no information about

the result of the measurement. Worse, according to the account from O’ s point of view, at

t,, S,=1and Sisinthe state represented by

TZ>. By contrast, according to the account
from the point of view of O', at t,, the system Sisin astate of superposition, and S, does

not even exist, at least if one adopts EE. Both accounts are correct (their conjunctionisa
version of the measurement problem), and yet they areincompatible. Hence, if we add the
state compl eteness principle (as Rl does) we areled to the conclusion that S's quantum
states, thevaluesof S, and therefore measurement outcomes, are not absol ute, but relative

to the observer system. That is, relativeto O, (11.6.1)-(11.6.2) istrue; relativeto O,

(11.6.3)-(11.6.4) is. Therefore, according to RI thereisno conflict between the two

accounts.
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At this point, one might object that only one of the two accountsistrue, and
thereforethereisno reason at all to accept RI. For, if Oistheright sort of system, for
example, ameasuring device or amind, then collapse takes place (absolutely) at t;, and
therefore (11.6.1)-(11.6.2) istrue but (11.6.3)-(11.6.4) false. By contrast, if O isnot of the
right sort, then thereisno collapse, and therefore (11.6.3)-(11.6.4) istrue but (11.6.1)-
(11.6.2) isnot. Onthefaceof it, thisobjection isvery powerful. After al, an orthodox
theorist might continue, in the above example, O isa SGZ and thereis collapse. In other
words, the assumption that there are special collapse-inducing systemsexplainswhy
collapse occurs and eliminates the need for relationalism, and therefore we ought to make
that assumption.”> However, proponents of RI disagree. They do not believe that
postul ating the existence of special collapse inducing systemsisthe best available
explanation of collapse since they think they can provide abetter one. Inaddition, they
reasonably hold that all systemsare equivalent inthe sense of being in principle describable
in quantum mechanical terms and in having the capacity to become entangled with other
systems, thus generating correl ations of the sort described by (11.6.4). Thereareno
privileged systemsthat induce collapse absolutely, that is, rel ativeto all possible observers.
11.7 Measurement Accordingto Rl

Asthe notion of quantum stateisrelationa (asystemisinacertain stateonly in

relation to another system), so isthat of collapse: collapse may occur with respect to a

2 How much the claim that, say, the mind has a collapsing capacity explainsanything is
difficult tosay. Obvioudly, it explains something: it isthe mind and not planet VVenus that
producesthe collapse. However, oneisreminded of the ‘ dormitive power’ of opium asthe
explanation why some chap hasfallen asleep after taking an opium, the stock example used
by early modern philosophersto ridicul e alleged Aristotelian-schol astic explanations of

phenomena.
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system O but not with respect to another system O'. Hereiswhy. Unitary evolution of a

system requiresthat the system beisolated, that is, that all the relevant Hamiltoniansbe
expressed in the Hamiltonian operator entering TDSE. Since TDSE isalwayswritten from
the point of view of an observer system, this requirement can befulfilled only if the
relevant information isavailable from the perspective of that observer. Supposethe

observer systemis O in the example above. Inorder to measure S, ismust interact with S.

Hence, from the point of view of O, the system, namely S+O, isisolated only if O contains
information about theinteraction Hamiltonian, and ultimately about S' sHamiltonian and its
own. While O contains, or at |east may contain, adequate information about S's
Hamiltonian, it cannot contain adequate information about itsown. Thereasonisthat a
system O hasinformation about asystem Sonly if thereisacorrelation between S’ sand
O'svariables. For example, apointer hasinformation about aphysical quantity Q if the
pointer’ spositionsand Q' svauesare correlated. Now, Rovelli claims, it makesno sense
to be correlated with oneself (Rovelli, C., (1996): 1666). One might object to such aclaim,
and perhaps argue that self-conscious systems have the capacity to know their mental states
by introspecting. However, aside from the dubious psychology involved in the previous
claim, thereis some reasonablelogical evidencethat no system can be so correlated asto
havetotal information about itself.** We may interpret this as entailing that no physical
system can have exact information about its own Hamiltonian. In short, from the
perspective of O, the system O+Sisnot isolated and the Hamiltonian entering TDSE isfar
from complete. Theresultisthat inrelationto O, S sstate vector collapsesand itsphysical

state undergoes an abrupt change.

3 DalaChiara, M.L., (1977); Breuer, T., (1995).
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By contrast, O’ may, and in fact does, contain adequate information about the

Hamiltoniansinvolvedin S+O, and consequently from its perspective the state
development of S+O isunitary. Thereisno conflict between the two types of development
because state systemsarerelational by nature. In short, thereisno mystery in collapse per
se, although why the collapse is onto one el genvector rather than another, that is, why one
getsthe measurement return one gets, does remain compl etely mysterious. Thereisanother
aspect of measurement that Rl can clarify, namely, when measurement takes place. Aswe
saw when discussing von Neumann’ sview, Rovelli introduces an operator M on the space
of S+O capable of telling uswhen the correl ation between measured variable and pointer
position occurs.™ Of course, the whol e exercise makes sense only from the perspective of

O, but this, according to RI, isinevitable. Ananaogouspoint isalso evidentintheRI

treatment of EPR-like situations. Thetwo entangled particles havetheir anti-correl ated
properties only with respect to an observer O, located in the proximity of particle a, or in

relation to an observer O', located in the proximity of particle b. Any conclusion one might

want to derive will also berelative to one of the two observers.

If RI iscorrect, there cannot be any quantum mechanical, observer-independent,
universal description of asystem. To paraphrase Rovelli, thereasonisthat physicsisonly
about therelativeinformation systemshave regarding each other, and thisinformationisall

one can say about the world (Rovelli, C., (1996): 1655).'® Consequently, contrary to

4 Aswe noted, when M hasthe valuesit has, isamatter of debate.

> For details, see Laudisia, F., (2001).

' Hence, RI and the perspectival versions of the Modal Interpretation are quite close. By
contrast, Everett’ srelative stateformulationisnot, asrelative statesare so not inrelation to

another system but inrelationtoitsstates. Rl isabout relationsamong systems, not states.
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Everett, thereis no quantum description of the universe as awhole because by hypothesis
thereisno observer system that isnot asubsystem of the universe. Similarly, contrary to
Einstein, the observer, even if conscious, cannot discretely fadein the background. Atthis
point, one might object that if Rl isright, physicsisunableto tell ushow thingsreally are
becauseits accounts are bound to berelational, but RI rejectsthisline of argument. There
isno privileged observer, something like Newton’ s absol ute space and timein relation to
which thingsreally are oneway or another. Infact, according to Rovelli an appeal to an
observer-independent description of asystem ismeaningless. However, in practiceitis
helpful to agree on aclassof privileged systems (macroscopic systems we are able to use as
measurement apparatuses) in relation to which quantum phenomenaare studied, and
consequently always discuss collapse only relative to them. Still, thisshould not obscure
thefact that such an agreement merely reflects our human idiosyncrasies, asall systemsare
equivalent.

11.8 Just Density Operator s?

There have been attempts at getting around the measurement problem without
denyingtheuniversal validity principle, the observer’ sreliability principle, theeigenvalue-
only-if-eigenstate principle, or the absol ute state principle. Aswe saw, one of the
distressing features of how quantum measurement is standardly handled isthe breach in the
continuous and linear evolution of the state vector caused by collapse. Suppose, however,
that thisbreach isjust the result of acertain type of mathematical approach centered onthe
notion of state vector; in other words, supposethat it isamathematical artifact, asit were.
Then, it might be possible to avoid it altogether by approaching measurement from a
different mathematical perspective. Infact, one can‘do’ quantum mechanics by using only
density operators, without appealing to the state vector. To see how thisworks, we need

tolook at the temporal evolution of the density operator. Let us start by noting that the
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derivative of an operator isjust the derivative of each of the elements of the corresponding
matrix, and that the derivation rules areidentical to thosefor functions aslong as one does
not change the order of the operators."” Now consider the density operator p = |‘P><‘P| of a

pure state system |‘P> . Then, by applying therulefor the derivative of aproduct

9 o= 3 ww)= S vl S ). ey

Now as we know, TDSE can be written as
. d
in—|¥)=H|¥), (11.8.2)
dt
where H isthe system’ sHamiltonian. Inaddition, using the rulefor the manipulation of
Dirac formulae, the complex conjugate of TDSE is
d

—iha<‘l’| =(¥H, (11.8.3)

since H isHermitian and therefore equal to itsadjoint.

By plugging (11.8.2) and (11.8.3) into (11.8.1), we obtain

d 1 1
—p=—H|¥YY¥|-=|¥)¥H, 1184
that is,

_i[H ] (11.85)
a? Tt Pl -

the equation ruling the time evolution of the density operator for apure state. Equation
(11.8.5), in effect, plays on the density operator the role that TDSE plays on state vectors.
The conservation of probability isgiven by thefact that at all times Tr(p)=1. So, itis
possibleto take density operators as containing all that we can know about quantum
systems and use them together with (11.8.5) instead of state vectorsand TDSE.

At this point, one might argue that collapse can now then be taken out of the picture

! For an introduction to derivatives, see appendix 1.
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and replaced by the trace operator Tr, whichislinear. The problemisthat in adensity
operator theinterference terms have not disappeared and are visiblein the corresponding
matrix as non-diagonal terms. However, once the compound system made up of measured
system plus measuring apparatus comesinto play, one usesthe reduced density operator for
the object system according to the procedure described before, and then something
remarkable, decoherence, takesplace.
11.9 Decoherence

Decoherence is aprocess whereby asystem S correlated with a system E appearsto
be in amixed state to someone measuring S alone. Before we see how this might happen,

let usremember that the most obvious difference between the pure state
%) =a/ed,)+ B|e,d,) and the corresponding mixed state W =|’|e,d,) + |B[e,d,) is
given by the fact that the former invol ves superposition interference and the latter does not.

Thisisparticularly clear at thelevel of density operators. Asweknow, for thesystemina

pure state the density operator is

py =00 ([&)(&] ®|d,)(d,[)+ BB (&,)(e,| ®|d,)(d[)+
B’ (e)(e,]®|d,)(d[)+ B (e,)(e| ®[d)(d ) (11.9.1)

and the corresponding matrix is

aa” of”
B 11.9.2
b &a BB] (1192

By contrast, for the mixed state,
pw =l ((&)(&] ®d,)(d, )+ B[ (.)(e;] ® | )(ck]) (11.9.3)

and the corresponding density matrix is

aa” O
w = . | 11.94
P [o BBJ (99

In other words, the most obvious differenceisgiven by the crossterms (present in the pure
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state and absent in the mixed state) or, in terms of matrices, by the off-diagonal elements
(different from zero in the pure state and equal to zero in the mixed state).'®

Decoherenceisaprocess by which asystemin state| V) interacts with the

environment in such away that the crossterms of its density operator (the off-diagonal
elementsof itsdensity matrix) become practically indistinguishablefrom zero. In other

words, p, and p,, effectively coincidein the sensethat the expectation values of any

operator calculated using theformer areempirically identical to those cal culated using the

latter. Then, it seemsreasonabl e to think that although |\P> isapure state, the system in fact

behavesasif it werein amixed state when we measureit. To see how this might come
about, let uslook at the following example, dueto Laloé (Lalog, F., (2001)).
EXAMPLE 11.9.1

Consider asystem N of 2n atomsthat have gone trough a SGD that has correlated

their spin directionswith positionsin space so that the state vector is
¥)=a(l+)®..®n+))+p(1-) ®...®|n-))=a|A)+ B|B), (11.9.5)
where |i +)isthe state of atom i after it exited the spin-up side of the SGD, and analogously
for |i —). Suppose now that aphoton K interacts with the atoms and is therefore scattered
into state |k +) if it interactswith atomsin state |i +) and into state |k —) if it interacts with
atomsin state |i —). Then the state of the new system N+K is

¥ =a|A)®|k+)+B|B) ®|k-), (11.9.6)

and the reduced density operator for N is

py =aa’|[A)A|+BB°|B)(B|+ap”(ANB|® (k—|k+))+

Bo” (B)(A|® (k+[k-)). (11.9.7)

If the distance between the two sides of the SGD ismacroscopic, |k+) and |k—) will be

'8 Whether thisisthe only difference, however, is another question, aswe shall see.
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orthogonal or nearly so, with theresult that the interference membersof p,, (the off-
diagonal elementsof the corresponding density matrix) will be zero or nearly so aswell. In
addition, multiple scattering eventswill maketheinterference memberstend exponentially
to zero.

The example showsthat in general, when atomic states arelocated at different
places as they must bein macroscopic measuring devices, theinteraction with
environmental particleswill destroy their coherence. If we couplethiswith thefact that
macroscopi ¢ objects are awash in particles and that decoherencetime for macroscopic
objectsis phenomenally fast, we have an explanation why interference effectsare
effectively absent in the macro-world but in extreme circumstancesin which environmental
influenceis very greatly reduced. *° If superposition werejust interference, then
decoherence would solve the measurement problem by explaining why measuring devices,
or Schrodinger’ scat, are never found in astate of superposition. That is, the superposition
membersof their density operators become so closeto zero so quickly that interference,
athough present, asfar aswe are concerned never appears. In other words, macroscopic

devices, when alowed to interact with the environment, behave asif they werein amixed

9 A dust particle of radius of about 10 °cm in avacuum containing only microwave
background radiation has adecoherencetime of about 10°s; the decoherence time for the
same particlein normal air temperature and pressure dropsto about 10 *°s. We can get a
sense of the magnitudesinvolved by noting that the age of the universeisabout 10"'s
(Home, D., (1997): 155). Still, by almost eliminating environmental interferenceit has
been possibleto create a case of macroscopic quantum tunneling by using a
Superconducting Quantum Interference Devices (SQUID). For more, see Greenstein, G.,
and Zgonc, A., (1997): 171-77. Decoherence at the micro-level ismuch slower, which

explainswhy interference playssuch alargerole.
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state even when they arein a pure state.

However, thereis moreto superposition than interference. To seewhy, let us
distinguish proper and improper mixtures. All the mixtureswe have considered up to now
are proper because the state of the systemisgiven by just one of the summandsin the
statistical mixture, although we do not know which. For example, in (11.9.3) the systemis

either in state((e )(e, | ®|d,)(d,[) or in state (je,)(e,| ®|d;)(d|): thetwo states are mutually

exclusive. However, in (11.9.1) the system’ sstateis still asuperposition, albeit with fewer

effectivemembersthan before, presumably acombination of actually simultaneously
present components ((&)(e,| ®|d,)(d; ). (e.){e.|®[d,){di]). (&)(&;|®|d.)(d]), and
(e.)(&|®|d,)(d,|): asfar asone can see, the four states are not mutually exclusive because

they somehow combine to make a gquantum state that seemsto defy interpretation. When
decoherence makesthelast two vanish we obtain an improper mixture because the
vanishing act does not alter the fact that the first two are not only quantum mechanically
compatible, but somehow “co-present” (and nobody understand what thisreally amount
to). AsBédll noted, to pretend otherwiseinvolvesthefallacy of converting an “and” into an
“or” (Home, 84-6). One might disagree with Bell’ s contention that we arereally dealing
with an “and”, but for surewe are not dealing with an“or”. In short, decoherence cannot
show why any determinate result comes about. AsLaloe putsit: “During decoherence, the
off-diagonal elements of the density matrix vanish (decoherence), whilein asecond step all
diagonal elements but one should vanish (emergence of asingleresult)” (Laloég, F., (2001):
677). Differently put, although it need not explain why we got this return, any solution to
the measurement problem hasto explain why we got onereturn. Consequently,
decoherence does not reconcile our experience of definite measurements outcomeswith the

linearity of TDSE.
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11.10Wigner’sFormula

Remarkably, itispossibleto provide probabilitiesfor sequences of measurements

on an ensemble without directly referring to the state function or to collapse, by using what

isknown as Wigner’ sformula for probabilities. Consider an ensemble E of n systems
described by the density operator p and two observables A and B with eigenvalues
&, @, and by, b, b, respectively. Let usdeterminethe probability Pr(a;,b,)
that if we measure first A, and then B we shall get @ and b;. Consider the projection
operators P* and P’ related to & and b; respectively. Aswe know,
Pr(a)=Tr(pR"), (11.10.1)
and upon measurement the system will collapse onto |\|1i> with density operator

P =i )wi - (11.10.2)

However, Tr(R*p)= (v, |plw;), and therefore (11.10.2) can berewritten as

_ wiwilplvi)wi| _ RpRA
P = @) TH(Rp) (11.10.3)

At thispoint, if we measure B,

Pr(b) =Tr(p,P) (11.10.4)

isthe probability of obtaining b; given that we got & on thefirst measurement. Hence,

Pr(a.b,) =Tr(p,P2 )T (pP* )= Tr[PA‘EPAp) JTr(pPA) (11.10.5)
that is,
Pr(a,b,)=Tr (RA pPiAPJ-B). (11.10.6)

Formula(11.10.6) can be generalized to more than two measurement returns separated by
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finitetimeintervalsanditisasimplified version of Wigner's formula.®® Now one could
take Wigner’ sformulaas primitive and useit to predict the returns of any sequence of
measurements one wisheswithout having directly to appeal to the projection postulate or
evento TDSE. Nevertheless, if one maintainsthat quantum states are represented by state
vectors and that the eigenvalue-eigenvector principleholds, every timeanew measurement
return occurs, one must assume that collapse hastaken place, evenif Wigner’ sformulais
silent onit. Indeed, Wigner himself never gave up the idea of collapse, aswe shall see.
However, one might abandon the idea of state vector altogether and just work with density
operators, concluding that thereisno abrupt non-linear collapse simply becausethereis
nothing to do the collapsing, asit were. Such an attitude could bejustified by noting that
even in standard quantum mechani cs quantum states are not measurable anyway. In other
words, one could view collapse asamathematical artifact associated to the (avoidable)
introduction of state vectors, asort of mathematical and historical curiosity.

However, the price to be paid for thismaneuver isan increasein thelack of
perspicuity of quantum mechanics. For the collapse postul ate explains not only why the
system comes out of superposition but also why quickly repeated measurements have the
same result; indeed, thiswas one of the main reasonsfor itsintroduction. By contrast,
Wigner’ sformuladoes not explain why repeated measurements havethe sameresults.  Of
course, if onelooks at quantum mechanics asamere agorithm to make correct predictions,
Wigner’ sformulawill do just fine; but then one would not be too bothered by the
measurement probleminthefirst place: collapse workswell, even if we cannot say much

about what makes measurement such a peculiar affair to disrupt TDSE.

20 See gppendix 4.
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Exercises

Exercise11.1

1.

2.

Provethat P,> = P,.

Provethat Tr(|A)(A)=1. [Hint. The arguments of Tr can berotated cyclically: the
rightmost can be moved to the leftmost position and vice versa; for example,
Tr(ABC)=Tr(CBA)=Tr(BAC). Usethisto prove Tr(ly)(¢|)= (4 |y) and then apply
thisresult to obtain what we want].

Trueor false if |y,),..., |y, ) spanthe space, then D P =1.

Exercise11.2

1. Provethat the density operator isHermitian. [Hint: We need to show that

(E|p|®@)" = (®|p|Z). From the definition of density operator, we have that

(Z|p|®@) = p,(E|¥ )(¥,|®). Now construct the complex conjugate of the
summation’ s argument and from that obtain (®|p|=)" ]
Construct the density operator for the pure system |‘P> = %(2; I] and determine < S, >

and < S >.

Thereisarelatively simpleway of constructing the density matrix inthebasis

Jwi)-wnw, )} for apure system|®) = D c,|w,): imply set the elements of the matrix

. . : 3+i
asp, ; =¢, c;. Construct the density matrix for the system |‘P>:i[ J

A15\2—-i

4. Construct thedensity matrix in H = H, ® H,, corresponding to (11.2.13).
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Exercise 11.3
Consider two entangled particles 1+2 instate |\V') = a|ed, ) — B|e,d,). Determinethe

density operator for the whole system and the reduced density operatorsfor 1 and 2.
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Answerstothe Exercises

Exercise11.1

1 P =|A}AJAXA, andsince(A|A) =1, P,* =|A)(A|A)YA|=| A} A|=P,.
2. Tr(jw)(¢[)=Tr(¢|w) = (¢|w). Applying thisresult the projection operator we obtain
Tr(AXA])=(AlA) =

3. True, asit directly followsfrom (11.1.3).

Exercise11.2

L (i)~ 2 w0, andconsenty

(=plo) <[ ozt o)] =S njorwyie 2 =i
( J(Z 2% (4+2| 4:12iJ' rience

<SZ>=%Tr_[4fzi 4?}@ —01J=%(5_4)=%;

h 5 4-21y0 1)| 4
<§>=__Tr . =—Hh.
18 |\4+21 4 A1 0)] 9

268



3. First, let usexpressthe state vector explicitly interms of the basis vectors:

|¥) = cl[;J + CZ[(;J = %@J + %(2} . Then, inthat basis,

4. p:@a* ([;gJ Note that this matrix is 2x2 whileit should be 4x4 because it operates
a

in a4-dimensional space. However, we can compress the notation by eliminating all the
columns and rows containing only elements equal to zero.

Exercise11.3

Py =l (&) ®[d)X(e| ® (d))-0B" (&) ®|d)N(e.| @ (d;[)-a"B(e,) @ |d,) )& ® (d.])+
|B|2(lez> ® |d2>)(<62| ®(d, |)

that is,

po =l (&)(e] ®[d)(d))-ap" (& )&, ®|d)(d,)) -0 B(le:)e| ® |d,)(d )+
BI*(e.)(e,| ®[d,)(d, )

Then, p,={o"|e}(e,|+ B[ |e;) (e[ and p, =fuf|d)(ck|-+[B["]d,)(d |
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