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Chapter 11 

Measurement Problem II: the Modal Interpretation, the Epistemic Interpretation, 

the Relational Interpretation, Decoherence, and Wigner’s Formula.  

Previously, we have considered approaches to the measurement problem that deny 

either the universal validity principle, or the observer’s reliability principle.  We now turn to 

approaches that reject the remaining two principles or none at all.  We start with the modal 

interpretation, which rejects EE.  Then we turn to two views that reject the absolute state 

principle, namely, the epistemic and the relational interpretations.  Finally, we consider an 

attempt at solving the measurement problem without denying any of the four principles that 

are necessary to its production, namely the decoherence approach.  However, before 

tackling these views, we need some more theory. 

11.1 The Projection Operator 

The Projection Operator of a normalized vector 

  

y  is 

  

Py = y y .  If we apply 

  

Py  

to a vector 

  

Y , we obtain  

  

Py Y = y y Y = l y ,        (11.1.1) 

a multiple of 

  

y  with the coefficient of proportionality 

  

l  being the scalar product 

  

y Y . 

The projector operator has two important properties, namely 

  

Py

2
= Py          (11.1.2) 

and 

  

Tr y y( )=1.         (11.1.3) 

Note that if 

  

y  is a basis vector, then 

  

Py Y  is nothing but the y-component of 

  

Y , the 

orthogonal projection of 

  

Y  onto 

  

y .  Hence, if we project 

  

Y  onto the basis vectors 

  

y1 ,..., yn  we obtain the sum of 

  

Y ’s components, so that 
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Y = y i yi Y
i

å = Py i
Y

i

å .      (11.1.4) 

Suppose now that 

  

Y = c i y i

i

å .  Then, as we know, 

  

c i = y i Y  and 

  

c i

*
= Y y i .  

Hence,  

  

c i

2
= Y yi yi Y = Pi ,       (11.1.5) 

that is, the probability of getting the measurement return

  

li , the eigenvalue associated with 

the basis vector 

  

y i , is obtained by sandwiching the projector of that basis vector.  

11.2 The Density Operator 

Up to now, we have described a system by using its state vector.  Such method has 

some drawbacks.  For example, neither mixed states, nor subsystems of entangled states, 

although of obvious interest, can be represented by a state vector.  The remedy is to 

introduce the notion of density operator, which allows the study of quantum systems 

uniformly. 

Consider a mixture with probability 

  

p1 ,

  

p2 ,…,

  

pn  of being in the corresponding 

state 

  

Y1 ,

  

Y2 ,…, 

  

Yn .  As we know, if O is an observable, then 

  

< O >= pi < OYi
>= pi Yi O Yi

i

å
i

å .     (11.2.1) 

We can now define the density operator 

  

r = pi

i

å Yi Yi .1         (11.2.2) 

Given that 

  

Pi = Yi Yi  is a projector operator and therefore 

  

Tr Pi( )= 1, we may 

                                                 
1 In other words, to construct the density operator, take the projector for each of the 

  

Yi , 

weigh it by the probability that the system is in state 

  

Yi , and sum all the thus weighted 

projectors.  So, in a pure state system, 

  

r = Y Y = PY , namely, 

  

Y’s projector. 
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immediately infer that 

  

Tr r( )= 1.  Since

  

Pi

2
= Pi, we have 

  

Tr PiO( )= Tr Pi

2
O( )= Tr PiPiO( )= Tr PiOPi( ),     (11.2.3) 

where the rightmost member is obtained by cyclical rotation on the previous one.  From 

(11.2.3) we obtain 

  

Tr PiO( )= Tr Yi Yi O Yi Yi( )= Yi O Yi Tr Pi( ),    (11.2.4) 

and since 

  

Tr Pi( )= 1 it follows that 

  

Tr PiO( )= Yi O Yi ,        (11.2.5) 

By plugging (11.2.5) into (11.2.1), we obtain 

  

< O >= piTr Yi Yi O( )
i

å .       (11.2.6) 

Now let us note that 

  

rO = pi

i

å Yi Yi O , and therefore 

  

Tr rO( )= Tr pi

i

å Yi Yi O
æ 

è 
ç 

ö 

ø 
÷ .       (11.2.7) 

Since Tr is a linear operator, the trace of a sum is the sum of the traces, and consequently 

we can rewrite (11.2.7) as 

  

Tr rO( )= piTr Yi Yi O( )
i

å .       (11.2.8) 

Finally, by plugging (11.2.8) into (11.2.6) we obtain 

  

< O >= Tr rO( ),        (11.2.9) 

which expresses O’s expectation value in terms of the density operator.  In a pure state 

system such that 

  

Y = c i y i

i

å , upon measuring O the probability of obtaining the 

eigenvalue

  

li  is 

  

Pi , as (11.1.4) shows.  Hence, remembering that both 

  

Pi and the density 

operator

  

r  are Hermitian, by using (11.2.9) we obtain 

  

c i

2
= Tr rPi( ).         (11.2.10) 
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The density operator, then, provides a uniform procedure for calculating 

expectation values and the probabilities of individual returns for both pure and mixed state 

systems.  More generally, all measurable quantities can be obtained by means of the density 

operator.  Hence, while the state vector can only describe a pure state, a density operator 

can describe mixtures as well, thus providing a general way of representing any sort of 

system.  In addition, while the same quantum state can be described by different state 

vectors, it can only be described by one density operator.  A system is in a pure state if and 

only if the density operator reduces to a projection operator, and therefore 

  

r2 = r . 

Now let us construct the density operator for 

  

Y = a e1d2 + b e2d1  the entangled 

state of particles 1 and 2, where 

  

e1 , e2{ } is the basis for 

  

H1, the space of particle 1, and 

  

d1 , d2{ } is the basis for 

  

H2 , the space of particle 2.  Keeping in mind that 

  

ab  is 

shorthand for 

  

a Ä b , we have 

 

  

r = a e1 Ä d2 + b e2 Ä d1( )a* e1 Ä d2 + b* e2 Ä d1( ),  (11.2.11) 

that is, 

  

r = aa* e1 Ä d2( ) e1 Ä d2( )+ ab* e1 Ä d2( ) e2 Ä d1( )+

ba* e2 Ä d1( ) e1 Ä d2( )+ bb* e2 Ä d1( ) e2 Ä d1( ).   (11.2.12)

 

Since 

  

A Ä B( ) C Ä D( )= AC Ä BD , we obtain 

  

r = aa* e1 e1 Ä d2 d2( )+ ab* e1 e2 Ä d2 d1( )+

ba* e2 e1 Ä d1 d2( )+ bb* e2 e2 Ä d1 d1( ).    (11.2.13)

 

11.3 Reduced Operators 

Suppose that particles 1 and 2 have become entangled, and that we want to make 

predictions about observable O of particle 1. Obviously, one way is appropriately to apply 

  

r , the density operator for system 1+2, to O’s extension.  However, it is also possible to 

construct a new density operator 

  

r1, the reduced density operator of 1, which operates in 
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H1, and therefore can be applied to O directly.  The matrix element 

  

oi, j  of 

  

r1 is obtained by 

performing a partial trace on 

  

r  with respect to 2: 

  

oi, j = ei dm( )
m

å r e j dm( ),       (11.3.1) 

so that 

  

r1 = Tr2 r( ).  In other words, to obtain 

  

r1, we apply the operator Tr to the parts of 

  

r  

containing basis vectors from 2.  Hence, if (11.2.13) gives the density operator for the 

system 1+2, then 

  

r1 = aa* e1 e1 Ä Tr d2 d2( )+ ab* e1 e2 Ä Tr d2 d1( )+

ba* e2 e1 Ä Tr d1 d2( )+ bb* e2 e2 Ä Tr d1 d1( ),
    

 (11.3.2) 

and remembering that 

  

Tr A B( )= B A  we obtain 

  

r1 = aa* e1 e1 + bb* e2 e2 .       (11.3.3)  

It can be shown that 

  

r1 is in fact a density operator and that it contains the same 

information about 1 as the state vector of the compound system.2 

11.4 The Modal Interpretation 

Under the label “modal interpretation,” one can group a rather varied assortment of 

interpretations of quantum mechanics that share the rejection of EE.  The field of modal 

interpretation is far from settled, with several authors holding rather different views, and 

consequently we shall restrict ourselves to very general considerations.3 

                                                 
2 However, there is no Hamiltonian operator relating to, say, 1 alone, enabling us to obtain 

the evolution equation for 

  

r1.  By contrast, there is no such problem for the density 

operator of the compound. 

3 For a general account of the modal interpretation, see Vermaas, P. E., (1999). 
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The basic idea is that the standard quantum state never collapses and that its job is 

to provide the probabilities, interpreted in terms of ignorance, that the system possesses one 

among a certain set of properties.  The problem, of course, is to come up with such a set of 

properties without falling foul of KS.  To this effect, typically, one distinguishes the value 

state from the dynamical state of a system.  The latter is the standard, but non-collapsable, 

quantum state.  The value state, an entity that does not exist in the standard interpretation, 

describes the properties of the system.   

One way to understand how this can be made to work is by appealing to Schmidt’s 

theorem (the bi-orthogonal decomposition theorem).  Consider a system S made up of two 

disjoint subsystems

  

S1 and 

  

S2  and whose Hilbert space is 

  

H = H1 Ä H2 .  Then, for every 

state vector 

  

Y  in H it is the case that 

  

Y = c i y i Ä fi

i

å ,        (11.4.1) 

where the set of 

  

y ’s is an orthonormal basis (the Schmidt basis) in 

  

H1, the set of 

  

f ’s an 

orthonormal basis (the Schmidt basis) in 

  

H2  and 

  

c i

2
= 1

i

å .4  For example, the singlet 

configuration (8.4.1) takes the form of a bi-orthogonal decomposition.  (Note that the 

vector expansion has only two addenda instead of four).  It turns out that the decomposition 

is unique if and only if no two 

  

c i

2
are equal. 5  For example, the singlet configuration 

                                                 
4 Given (11.4.1), one can easily obtain the reduced density operators 

  

r1 = c i

2
y i y i

i

å  

and 

  

r2 = c i

2
f i f i

i

å . 

5 The theorem holds only for a two-component system, although each subsystem can be 

made up of further subsystems.  When the various

  

c i

2
 are not all different the 

decomposition is degenerate and things get more complicated.  Still, modal interpretations 
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(8.4.1) is not unique because 

  

c1

2
= c2

2
, and in fact, we saw that (8.4.1) enjoys rotational 

invariance.  When the decomposition is unique, the state of S picks out a unique basis 

  

y1 ,..., yn{ }, and therefore an observable O, for 

  

S1.  The same is true of 

  

S2 , where an 

observable Q is picked by the state of S.  Then, each of the 

  

y ’s is a value state for 

  

S1 and 

each of the 

  

f ’s a value state for 

  

S2 .   

At this point, quantum mechanical computation takes over.  The dynamical state 

  

Y  gives a probability 

  

c i

2
 that 

  

S1 has a value state 

  

y i  and 

  

S2  value state 

  

fi .  The 

adoption of a modification of the eigenstate to eigenvalue link, namely, the value-eigenstate 

to eigenvalue link, guarantees that O and Q have the appropriate eigenvalues.  In particular, 

when, say, 

  

S2  is a measuring device and 

  

S1 the observed system, the entanglement 

between 

  

S1 and 

  

S2  brought about by TDSE is in fact a bi-orthogonal decomposition.  The 

rejection of EE allows one to say that pointers point even when they are represented by a 

superposition, thus eliminating the pure state problem.  At the same time, it becomes 

possible to say that O has a determinate value even before measurement even if we do not 

know it.  The strictures imposed by KS are satisfied by requiring that S1 may not possess all 

possible properties all the times.  Instead, S1 is only ascribed O and all the properties 

obtainable from it by manipulation in terms of the logical connectives “not”, “or”, “and.”6  

Other properties are taken to be undefined.  We may call the view just described “the bi-

                                                                                                                                                 
can be extended to cover such cases.  For simplicity, we shall stick to non-degenerate 

cases. 

6 These logical connectives are mapped onto a subset of the relevant Hilbert space.  There 

is not a general agreement on how to do this.  We shall see one possible way of doing it 

when we study the Consistent Histories Interpretation, which constructs a Boolean algebra 

(section 12.3). 
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orthogonal interpretation.”   Its predictions are identical to those of standard quantum 

mechanics. 

The bi-orthogonal interpretation suffers from two main problems.  First, the system 

  

S = S1 + S2  must be in a pure state.  Second, the fact that Schmidt’s theorem applies only to 

two-component systems entails that 

  

S1 has property O only from the point of view of

  

S2 .  In 

addition, if we couple 

  

S1 not with 

  

S2  but with, say, 

  

S3 , the bi-orthogonal decomposition of 

the state vector for this new compound will not choose the set of 

  

y ’s as an orthonormal 

basis in

  

H1, and this reinforces the point that a system’s properties (not just their values) are 

not intrinsic but relational since they exist only in connection to other systems, a fact often 

referred to as “perspectivalism.” 7  In addition, when one of the two systems is a 

measurement device, perspectivalism produces a type of environmental contextuality that 

some find problematic because it limits one’s ability to examine correlations.  For example, 

in the singlet configuration, where  a and b are the two entangled particles and A and B are 

the devices measuring them, the total system is abAB.  In terms of the biorthogonal 

interpretation, the system can be divided into A and abB or into B and abA, and the 

respective pointer positions cannot be correlated because they correspond to different 

perspectives.  

However, to a certain degree these two problems can be diminished by altering the 

bi-orthogonal version.  For, it turns out that when (11.4.1) applies, the bi-orthogonal 

decomposition is unique, and 

  

W = c i c i c i

i

å         (11.4.2) 

                                                 
7 Hence, perspectivalism, as it is here understood, is more radical than property 

contextualism.  For the latter, not the properties but their values are context dependent; for 

the former, the very existence of a property is contextual. 
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is the reduced density operator for subsystem 

  

S1, then 

  

y i = c i .  In other words, in the 

Schmidt basis for 

  

S1 of system 

  

S = S1 + S2 , the matrix of W is diagonalized.  Hence, instead 

of using the bi-orthogonal decomposition theorem, one may use the familiar reduced 

density operators in order to determine 

  

S1’s properties.  One may then generalize this result 

into what is called “the spectral interpretation” and claim that the value states of any system 

are provided by the spectral resolution of its density operator.  This allows the consideration 

of subsystems 

  

S1,...,Sn  that are not part of a composite S in a pure state, and therefore it 

solves the first problem.  Moreover, it allows the correlation of the properties of the 

measuring devices A and B in the EPR case described above, thus diminishing the role of 

perspectivalism. 

Nevertheless, some degree of perspectivalism remains.  For the spectral 

interpretation, like the bi-orthogonal interpretation, allows the correlation of properties of 

subsystems 

  

S1,...,Sn  only if such subsystems are disjoint.  Since if a system S has more than 

two subsystems then it can be partitioned into disjoint subsystems in more than one way, 

correlations can be established only among those properties belonging to subsystems 

involved in one and the same partition.  For example, suppose that 

  

S = S1 + S2 + S3.  

Obviously, one can partition S into 

  

S1,S2,S3 , or into 

  

S1S2( ),S3 , and so on.  Consequently, 

any correlation of properties depends on a specific partition, and therefore perspectivalism 

remains. 

The obvious solution is to claim that there is one and only one privileged partition 

of a complex system.  In other words, one may claim that there are disjoint elementary 

systems that are somehow fundamental in nature and that complex systems are built out of 

them.  This is the basic idea behind the atomic interpretation.  In this view, the properties of 

the fundamental (atomic) systems are obtained according to the spectral interpretation.  

However, the property-projectors of a compound (molecular) system are obtained 
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differently: they are the tensor product of the property-projectors of the component atomic 

systems.  

In spite of their ingenuity, it remains unclear whether modal interpretations can 

successfully cope with measurement.  One can show that if the modal interpretations are 

correct there are some possible measurements that have no outcome.  Although no doubt 

serious, this may not be a fatal drawback, as long as the measurements in question are 

outlandish and utterly unrealistic.  The problem is that if the measurement device must be 

described in an infinite dimensional Hilbert space (as it is the case with a pointer allowing a 

continuous set of readings), then these interpretations fail to account for measurement 

outcomes.  This casts doubts that modal interpretations are empirically adequate.       

11.5 The Epistemic Interpretation 

Some proposals to solve the measurement problem are based on the rejection of the 

absolute state principle, the view that the state vector is unqualifiedly about the physical 

state of a system.  The most radical of these is what may be dubbed the “Epistemic 

Interpretation”, according to which the state vector does not describe a physical system but 

our knowledge of its possible experimental behaviour, and its collapse at measurement 

merely refers to a change in such knowledge.8   In other words, the temporal evolution of 

the wavefunction does not describe the evolution of a physical system but the change in the 

                                                 
8 Fuchs, C. A. and Peres, A., (2000), if I understand them correctly.  See also their reply to 

comments in the same journal, (September 2000), 11-14 and 90.  Similar views are held by 

Peierls (Peierls, R. E., (1991)), and Zeilinger (Zeilinger, A., (1999)). Later in his career, 

Heisenberg claimed that the state function contains both objective and subjective elements, 

the former ones associated with the potentialities present in the system, and the latter ones 

reducible to the individual’s knowledge of the system; the function’s collapse is just the 

result of a change in knowledge (Heisenberg, W., (1971): 53-4).    
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probabilities of possible experimental returns given the observer’s knowledge.  So, 

Schrödinger’s cat is not, as it were, half dead and half alive; rather, the state of 

superposition simply represents our imperfect knowledge of the cat’s state.  Upon 

observation, our knowledge, but not the cat, abruptly changes, and this is represented by 

the wave function collapse.  There is no measurement problem because TDSE and collapse 

describe two different and well-defined epistemic states, one before and one after 

measurement.  

The idea that the state vector does not really express a physical state can be 

supported by considering interaction-free measurements.  A photon represented by the 

wave packet 

  

a  is traveling in a Mach-Zehnder interferometer along path a toward a beam 

splitter with equal reflection and transmission indexes, so that the probability the photon is 

reflected is the same as the probability it is transmitted, namely, 1/2 (Fig. 1).   

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 

 
Suppose a transmitted photon moving along path b is in state 

  

b  and a reflected photon 

moving along path c is in state 

  

c .  On path b there is a detector B in state 

  

B  when not 

activated by a photon, and in state

  

B*  when activated by one; on path c there is nothing.  

  

a  

  

b  
  

c  

    S  

  B  
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Let us keep our attention on B.  If after a photon goes through the beam splitter detector B 

is not activated we can infer that the photon is on path c.  For, at the beginning, the state of 

the system photon-plus-detector is

  

a Ä B ; once the photon has gone through the beam 

splitter, the state becomes 

  

1

2
b Ä B + c Ä B[ ],        (11.5.1) 

and eventually  

  

1

2
b Ä B* + c Ä B[ ].         (11.5.2) 

Since the detector is not activated, the system’s state has collapsed onto 

  

c B , and 

therefore the photon is on path c.  Note that collapse has occurred even if, apparently, since 

the photon did not activate the detector, nothing occurred physically; in other words, 

nothing interacted with the photon.9  Since this intimates, albeit it does not prove, that 

collapse is not a physical event, the epistemological interpretation seems quite reasonable. 

The basic problem for the epistemological interpretation is to avoid falling foul of 

the distinction between pure and mixed states.  Considering the cat definitely dead or 

definitely alive just before we open the box leads to the wrong prediction by ignoring the 

interference between the two states.  In other words, the epistemological move cannot work 

without other assumptions.  Fuchs and Peres simply claim that we can say nothing about 

the cat in-between observations.  However, the cat is a macroscopic object, and it seems 

preposterous to hold that we cannot even say that the cat is either alive or dead when we do 

not look at it.  Of course, it may turn out that we cannot say anything about the cat, but a lot 

of fancy footwork would be required to make such a view compelling.     

One might argue that the success of quantum mechanics strongly intimates that it 

                                                 
9 For a nice discussion of interaction free measurement, see De Weerd, J., (2002). 
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correctly describes physical reality.  However, Fuchs and Peres claim, such a description is 

not required for success; after all, probability theory gives reliable results without describing 

the physics of the roulette wheel.  Of course, many, from Einstein to Schrödinger and Bell, 

have thought of this view of quantum mechanics as unduly restrictive.  However, 

according to Fuchs and Peres, such an attitude is unjustified because the task of science is 

just to provide a compact description of physical experience and to predict experimental 

outcomes.  That in the case of classical physics we have been able to produce a model of a 

reality independent of our experiments is nice but not strictly necessary.  In short, they 

adopt a strict positivist position on the role of science. 

If the state vector is not about physical systems but about our knowledge of them, 

then TDSE depicts some sort of normative psychological dynamics, and, in a way, 

quantum physics becomes some sort of theory of conditional probabilities dealing with our 

legitimate expectations about measurement returns rather than with our actual expectations 

about measurement returns.10  In other words, it not a descriptive but a normative discipline, 

and in this respect not like psychology, which tells us how we think, but like logic, which 

tells us how we ought to think.  Even so, however, the transformation of a physical theory 

from discipline that primarily describes the working of nature and secondarily tells us how 

we should think about nature to a discipline that disregards the former task and aims merely 

to the latter is radical and to many utterly unpalatable.  

11.6 The Relational Interpretation 

                                                 
10 As Einstein remarked to Schrödinger, this is “the Born interpretation, which most 

theorists today probably share.  But then the laws of nature that one can formulate do not 

apply to the change with time of something that exists, but rather to the time variation of the 

content of our legitimate expectations.”  (Einstein to Schödinger, August 9, 1939, in 

Przibram, K., (ed.) (1967): 35).   
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Another attempt at getting around the measurement problem by rejecting the view 

that the state vector is unqualifiedly about the physical state of a system is the Relational 

Interpretation (RI).  In classical mechanics, velocities make sense only in relation to a frame 

of reference (an observer) and the velocities of an object with respect to two different 

frames of reference need not agree.  However, other physical quantities such as length or 

duration are invariant in the sense that their values are the same no matter which frame of 

reference we choose.  One might view part of the history of 20th century physics as a 

reshuffling of which physical properties are invariant and which are not.  According to 

Bohr, as Special Relativity shows that length and duration, invariant in classical mechanics, 

are in reality not invariant and therefore their values are only ascribable relative to a 

reference frame, so quantum mechanics shows that the values of quantum dynamical 

properties are ascribable only relative to an experimental setup.  That not only the values of 

quantum dynamical properties but also those of quantum states, quantum relations, and 

measurement for a physical system S are relative to another physical system O (the 

observer system) is the basic idea of RI.11  The observer system can be any system, a 

micro-system, a macro-system, an apparatus, or an experimenter, so that “observer system” 

need not, although it might, carry any connotation of consciousness. 

Consider the following standard quantum mechanical account.  Let S be a spin-half 

particle which at time 

  

t0 is in a state represented by 

  

Y0 = a­z + b z̄ .        (11.6.1) 

Suppose we measure 

  

Sz  and the measurement consists in the interaction between S and 

another system whatsoever  O, which for simplicity we assume to be a SGZ.  Suppose also 

that at 

  

t1 the measurement result is 

  

Sz = 1, in which case collapse has taken place and 

                                                 
11 Here we follow Rovelli, C., (1996).   
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Y1 = ­z .         (11.6.2) 

Let E be the sequence of events from 

  

t0 to 

  

t1.  Then, from O’s point of view, S went from 

a state represented by (11.6.1) to one represented  by (11.6.2), acquiring 

  

Sz = 1 at 

  

t1.   

Now let us introduce a new system O¢ which is not a subsystem of either S or O, 

and which describes E by considering the compound system S+O without interacting with 

it (without measuring it).  At 

  

t0, the state of S+O is represented by 

  

F0 = a­z + b z̄( )Ä c0 ,       (11.6.3) 

where 

  

c0  is O’s initial (ready) state.  At time 

  

t1, (11.6.3) has evolved into 

  

F0 = a­z Ä c+ + b z̄ Ä c- ,      (11.6.4) 

which exhibits the correlation between S’s and O’s variables.  Hence, from the point of 

view of O¢, E is described by (11.6.3)-(11.6.4).   

Formulas (11.6.1)-(11.6.2) and (11.6.3)-(11.6.4) offer two different accounts of E.  

For example, barring the case when 

  

a = 0 or 

  

b = 0 ,  (11.6.4) contains no information about 

the result of the measurement.  Worse, according to the account from O’s point of view, at 

  

t1, 

  

Sz = 1 and S is in the state represented by 

  

­z .  By contrast, according to the account 

from the point of view of O¢, at 

  

t1, the system S is in a state of superposition, and 

  

Sz  does 

not even exist, at least if one adopts EE.  Both accounts are correct (their conjunction is a 

version of the measurement problem), and yet they are incompatible.  Hence, if we add the 

state completeness principle (as RI does) we are led to the conclusion that S’s quantum 

states, the values of 

  

Sz , and therefore measurement outcomes, are not absolute, but relative 

to the observer system.  That is, relative to O, (11.6.1)-(11.6.2) is true; relative to O¢, 

(11.6.3)-(11.6.4) is.  Therefore, according to RI there is no conflict between the two 

accounts.  
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At this point, one might object that only one of the two accounts is true, and 

therefore there is no reason at all to accept RI.  For, if O is the right sort of system, for 

example, a measuring device or a mind, then collapse takes place (absolutely) at 

  

t1, and 

therefore (11.6.1)-(11.6.2) is true but (11.6.3)-(11.6.4) false.  By contrast, if O is not of the 

right sort, then there is no collapse, and therefore (11.6.3)-(11.6.4) is true but (11.6.1)-

(11.6.2) is not.  On the face of it, this objection is very powerful.  After all, an orthodox 

theorist might continue, in the above example, O is a SGZ and there is collapse.  In other 

words, the assumption that there are special collapse-inducing systems explains why 

collapse occurs and eliminates the need for relationalism, and therefore we ought to make 

that assumption.12  However, proponents of RI disagree.  They do not believe that 

postulating the existence of special collapse inducing systems is the best available 

explanation of collapse since they think they can provide a better one.  In addition, they 

reasonably hold that all systems are equivalent in the sense of being in principle describable 

in quantum mechanical terms and in having the capacity to become entangled with other 

systems, thus generating correlations of the sort described by (11.6.4).  There are no 

privileged systems that induce collapse absolutely, that is, relative to all possible observers. 

11.7 Measurement According to RI 

As the notion of quantum state is relational (a system is in a certain state only in 

relation to another system), so is that of collapse: collapse may occur with respect to a 

                                                 
12 How much the claim that, say, the mind has a collapsing capacity explains anything is 

difficult to say.  Obviously, it explains something: it is the mind and not planet Venus that 

produces the collapse.  However, one is reminded of the ‘dormitive power’ of opium as the 

explanation why some chap has fallen asleep after taking an opium, the stock example used 

by early modern philosophers to ridicule alleged Aristotelian-scholastic explanations of 

phenomena. 
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system O but not with respect to another system O¢.  Here is why.  Unitary evolution of a 

system requires that the system be isolated, that is, that all the relevant Hamiltonians be 

expressed in the Hamiltonian operator entering TDSE.  Since TDSE is always written from 

the point of view of an observer system, this requirement can be fulfilled only if the 

relevant information is available from the perspective of that observer.  Suppose the 

observer system is O in the example above.  In order to measure 

  

Sz  is must interact with S.  

Hence, from the point of view of O, the system, namely S+O, is isolated only if O contains 

information about the interaction Hamiltonian, and ultimately about S’s Hamiltonian and its 

own.  While O contains, or at least may contain, adequate information about S’s 

Hamiltonian, it cannot contain adequate information about its own.  The reason is that a 

system O has information about a system S only if there is a correlation between S’s and 

O’s variables.  For example, a pointer has information about a physical quantity Q if the 

pointer’s positions and Q’s values are correlated.  Now, Rovelli claims, it makes no sense 

to be correlated with oneself (Rovelli, C., (1996): 1666).  One might object to such a claim, 

and perhaps argue that self-conscious systems have the capacity to know their mental states 

by introspecting.   However, aside from the dubious psychology involved in the previous 

claim, there is some reasonable logical evidence that no system can be so correlated as to 

have total information about itself.13 We may interpret this as entailing that no physical 

system can have exact information about its own Hamiltonian.  In short, from the 

perspective of O, the system O+S is not isolated and the Hamiltonian entering TDSE is far 

from complete.  The result is that in relation to O, S’s state vector collapses and its physical 

state undergoes an abrupt change.   

                                                 
13 Dalla Chiara, M.L., (1977); Breuer, T., (1995). 
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By contrast, O¢ may, and in fact does, contain adequate information about the 

Hamiltonians involved in S+O, and consequently from its perspective the state 

development of S+O is unitary.  There is no conflict between the two types of development 

because state systems are relational by nature.  In short, there is no mystery in collapse per 

se, although why the collapse is onto one eigenvector rather than another, that is, why one 

gets the measurement return one gets, does remain completely mysterious. There is another 

aspect of measurement that RI can clarify, namely, when measurement takes place.  As we 

saw when discussing von Neumann’ s view, Rovelli introduces an operator M on the space 

of S+O capable of telling us when the correlation between measured variable and pointer 

position occurs.14  Of course, the whole exercise makes sense only from the perspective of 

O¢, but this, according to RI, is inevitable.  An analogous point is also evident in the RI 

treatment of EPR-like situations.  The two entangled particles have their anti-correlated 

properties only with respect to an observer O, located in the proximity of particle a, or in 

relation to an observer O¢, located in the proximity of particle b.  Any conclusion one might 

want to derive will also be relative to one of the two observers.15          

If RI is correct, there cannot be any quantum mechanical, observer-independent, 

universal description of a system.  To paraphrase Rovelli, the reason is that physics is only 

about the relative information systems have regarding each other, and this information is all 

one can say about the world (Rovelli, C., (1996): 1655).16 Consequently, contrary to 

                                                 
14 As we noted, when M has the values it has, is a matter of debate. 

15 For details, see Laudisia, F., (2001). 

16 Hence, RI and the perspectival versions of the Modal Interpretation are quite close.  By 

contrast, Everett’s relative state formulation is not, as relative states are so not in relation to 

another system but in relation to its states.  RI is about relations among systems, not states. 
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Everett, there is no quantum description of the universe as a whole because by hypothesis 

there is no observer system that is not a subsystem of the universe.  Similarly, contrary to 

Einstein, the observer, even if conscious, cannot discretely fade in the background.  At this 

point, one might object that if RI is right, physics is unable to tell us how things really are 

because its accounts are bound to be relational, but RI rejects this line of argument.  There 

is no privileged observer, something like Newton’s absolute space and time in relation to 

which things really are one way or another.  In fact, according to Rovelli an appeal to an 

observer-independent description of a system is meaningless.  However, in practice it is 

helpful to agree on a class of privileged systems (macroscopic systems we are able to use as 

measurement apparatuses) in relation to which quantum phenomena are studied, and 

consequently always discuss collapse only relative to them.  Still, this should not obscure 

the fact that such an agreement merely reflects our human idiosyncrasies, as all systems are 

equivalent.  

11.8 Just Density Operators? 

There have been attempts at getting around the measurement problem without 

denying the universal validity principle, the observer’s reliability principle, the eigenvalue-

only-if-eigenstate principle, or the absolute state principle.  As we saw, one of the 

distressing features of how quantum measurement is standardly handled is the breach in the 

continuous and linear evolution of the state vector caused by collapse.  Suppose, however, 

that this breach is just the result of a certain type of mathematical approach centered on the 

notion of state vector; in other words, suppose that it is a mathematical artifact, as it were.  

Then, it might be possible to avoid it altogether by approaching measurement from a 

different mathematical perspective.  In fact, one can ‘do’ quantum mechanics by using only 

density operators, without appealing to the state vector.   To see how this works, we need 

to look at the temporal evolution of the density operator.  Let us start by noting that the 
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derivative of an operator is just the derivative of each of the elements of the corresponding 

matrix, and that the derivation rules are identical to those for functions as long as one does 

not change the order of the operators.17  Now consider the density operator 

  

r = Y Y  of a 

pure state system 

  

Y .  Then, by applying the rule for the derivative of a product 

  

d

dt
r =

d

dt
Y Y( )=

d

dt
Y

æ 

è 
ç 

ö 

ø 
÷ Y + Y

d

dt
Y

æ 

è 
ç 

ö 

ø 
÷ .    (11.8.1) 

Now as we know, TDSE can be written as 

  

  

ih
d

dt
Y = H Y ,        (11.8.2) 

where 

  

H  is the system’s Hamiltonian.  In addition, using the rule for the manipulation of 

Dirac formulae, the complex conjugate of TDSE is 

  

  

-ih
d

dt
Y = Y H ,        (11.8.3) 

since H is Hermitian and therefore equal to its adjoint. 

By plugging (11.8.2) and (11.8.3) into (11.8.1), we obtain 

  

  

d

dt
r =

1

ih
H Y Y -

1

ih
Y Y H ,      (11.8.4) 

that is, 

  

  

d

dt
r =

1

ih
H,r[ ],        (11.8.5) 

the equation ruling the time evolution of the density operator for a pure state.  Equation 

(11.8.5), in effect, plays on the density operator the role that TDSE plays on state vectors.  

The conservation of probability is given by the fact that at all times 

  

Tr r( )= 1.  So, it is 

possible to take density operators as containing all that we can know about quantum 

systems and use them together with (11.8.5) instead of state vectors and TDSE.   

At this point, one might argue that collapse can now then be taken out of the picture 

                                                 
17 For an introduction to derivatives, see appendix 1. 
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and replaced by the trace operator Tr, which is linear.  The problem is that in a density 

operator the interference terms have not disappeared and are visible in the corresponding 

matrix as non-diagonal terms.  However, once the compound system made up of measured 

system plus measuring apparatus comes into play, one uses the reduced density operator for 

the object system according to the procedure described before, and then something 

remarkable, decoherence, takes place. 

11.9 Decoherence 

Decoherence is a process whereby a system S correlated with a system E appears to 

be in a mixed state to someone measuring S alone.  Before we see how this might happen, 

let us remember that the most obvious difference between the pure state 

  

Y = a e1d2 + b e2d1  and the corresponding mixed state 

  

W = a
2

e1d2 + b
2

e2d1  is 

given by the fact that the former involves superposition interference and the latter does not.  

This is particularly clear at the level of density operators.  As we know, for the system in a 

pure state the density operator is  

  

rY = aa* e1 e1 Ä d2 d2( )+ bb* e2 e2 Ä d1 d1( )+

ab* e1 e2 Ä d2 d1( )+ ba* e2 e1 Ä d1 d2( ),    (11.9.1) 

 

and the corresponding matrix is 

  

rY =
aa* ab*

ba* bb*

æ 

è 
ç 

ö 

ø 
÷ .        (11.9.2) 

By contrast, for the mixed state, 

  

rW = a
2

e1 e1 Ä d2 d2( )+ b
2

e2 e2 Ä d1 d1( ),     (11.9.3) 

and the corresponding density matrix is 

  

rW =
aa* 0

0 bb*

æ 

è 
ç 

ö 

ø 
÷ .        (11.9.4) 

In other words, the most obvious difference is given by the cross terms (present in the pure 
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state and absent in the mixed state) or, in terms of matrices, by the off-diagonal elements 

(different from zero in the pure state and equal to zero in the mixed state).18 

Decoherence is a process by which a system in state

  

Y  interacts with the 

environment in such a way that the cross terms of its density operator (the off-diagonal 

elements of its density matrix) become practically indistinguishable from zero.  In other 

words, 

  

rY  and 

  

rW  effectively coincide in the sense that the expectation values of any 

operator calculated using the former are empirically identical to those calculated using the 

latter. Then, it seems reasonable to think that although 

  

Y  is a pure state, the system in fact 

behaves as if it were in a mixed state when we measure it.  To see how this might come 

about, let us look at the following example, due to Laloë  (Laloë, F., (2001)). 

EXAMPLE 11.9.1 

Consider a system N of 2n atoms that have gone trough a SGD that has correlated 

their spin directions with positions in space so that the state vector is 

  

Y = a 1+ Ä ...Ä n +( )+ b 1- Ä ...Ä n -( )= a A + b B ,  (11.9.5) 

where 

  

i + is the state of atom i after it exited the spin-up side of the SGD, and analogously 

for 

  

i - .  Suppose now that a photon K interacts with the atoms and is therefore scattered 

into state 

  

k +  if it interacts with atoms in state 

  

i +  and into state 

  

k -  if it interacts with 

atoms in state 

  

i - .  Then the state of the new system N+K is 

  

¢ Y = a A Ä k + + b B Ä k - ,      (11.9.6) 

and the reduced density operator for N is 

  

rN = aa* A A + bb* B B + ab* A B Ä k - k +( )+

ba* B A Ä k + k -( ).    (11.9.7) 

If the distance between the two sides of the SGD is macroscopic, 

  

k +  and 

  

k -  will be 

                                                 
18 Whether this is the only difference, however, is another question, as we shall see. 
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orthogonal or nearly so, with the result that the interference members of 

  

rN  (the off-

diagonal elements of the corresponding density matrix) will be zero or nearly so as well.  In 

addition, multiple scattering events will make the interference members tend exponentially 

to zero.    

The example shows that in general, when atomic states are located at different 

places as they must be in macroscopic measuring devices, the interaction with 

environmental particles will destroy their coherence.  If we couple this with the fact that 

macroscopic objects are awash in particles and that decoherence time for macroscopic 

objects is phenomenally fast, we have an explanation why interference effects are 

effectively absent in the macro-world but in extreme circumstances in which environmental 

influence is very greatly reduced. 19  If superposition were just interference, then 

decoherence would solve the measurement problem by explaining why measuring devices, 

or Schrödinger’s cat, are never found in a state of superposition.  That is, the superposition 

members of their density operators become so close to zero so quickly that interference, 

although present, as far as we are concerned never appears.  In other words, macroscopic 

devices, when allowed to interact with the environment, behave as if they were in a mixed 

                                                 
19 A dust particle of radius of about 

  

10-3cm  in a vacuum containing only microwave 

background radiation has a decoherence time of about 

  

10-6 s ; the decoherence time for the 

same particle in normal air temperature and pressure drops to about 

  

10-36 s.  We can get a 

sense of the magnitudes involved by noting that the age of the universe is about 

  

1017 s  

(Home, D., (1997): 155).  Still, by almost eliminating environmental interference it has 

been possible to create a case of macroscopic quantum tunneling by using a 

Superconducting Quantum Interference Devices (SQUID).  For more, see Greenstein, G., 

and Zajonc, A., (1997): 171-77.  Decoherence at the micro-level is much slower, which 

explains why interference plays such a large role.  
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state even when they are in a pure state.   

However, there is more to superposition than interference.  To see why, let us 

distinguish proper and improper mixtures.  All the mixtures we have considered up to now 

are proper because the state of the system is given by just one of the summands in the 

statistical mixture, although we do not know which.  For example, in (11.9.3) the system is 

either in state

  

e1 e1 Ä d2 d2( ) or in state 

  

e2 e2 Ä d1 d1( ): the two states are mutually 

exclusive.  However, in (11.9.1) the system’s state is still a superposition, albeit with fewer 

effective members than before, presumably a combination of actually simultaneously 

present components 

  

e1 e1 Ä d2 d2( ), 

  

e2 e2 Ä d1 d1( ), 

  

e1 e2 Ä d2 d1( ), and 

  

e2 e1 Ä d1 d2( ): as far as one can see, the four states are not mutually exclusive because 

they somehow combine to make a quantum state that seems to defy interpretation.  When 

decoherence makes the last two vanish we obtain an improper mixture because the 

vanishing act does not alter the fact that the first two are not only quantum mechanically 

compatible, but somehow “co-present” (and nobody understand what this really amount 

to).  As Bell noted, to pretend otherwise involves the fallacy of converting an “and” into an 

“or” (Home, 84-6).  One might disagree with Bell’s contention that we are really dealing 

with an “and”, but for sure we are not dealing with an “or”.   In short, decoherence cannot 

show why any determinate result comes about.  As Laloe puts it: “During decoherence, the 

off-diagonal elements of the density matrix vanish (decoherence), while in a second step all 

diagonal elements but one should vanish (emergence of a single result)” (Laloë, F., (2001): 

677).  Differently put, although it need not explain why we got this return, any solution to 

the measurement problem has to explain why we got one return.  Consequently, 

decoherence does not reconcile our experience of definite measurements outcomes with the 

linearity of TDSE. 
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11.10 Wigner’s Formula 

Remarkably, it is possible to provide probabilities for sequences of measurements 

on an ensemble without directly referring to the state function or to collapse, by using what 

is known as Wigner’s formula for probabilities.  Consider an ensemble E of n systems 

described by the density operator 

  

r  and two observables A and B with eigenvalues 

  

a1,...,ai,...,an  and 

  

b1...,b j ,...,bk , respectively.  Let us determine the probability 

  

Pr(ai,b j )  

that if we measure first A, and then B we shall get 

  

ai  and 

  

b j .  Consider the projection 

operators 

  

Pi
A  and 

  

Pj
B  related to 

  

ai  and 

  

b j  respectively.  As we know, 

  

Pr(ai) = Tr rPi
A( ),        (11.10.1)  

and upon measurement the system will collapse onto 

  

y i  with density operator 

  

ri = y i y i .         (11.10.2)   

However, 

  

Tr Pi
A r( )= yi r y i , and therefore (11.10.2) can be rewritten as  

  

ri =
yi y i r y i y i

Tr Pi
A r( )

=
Pi

A rPi
A

Tr Pi
A r( )

.      (11.10.3) 

At this point, if we measure B,  

  

Pr(b j ) = Tr riPj
B( )        (11.10.4) 

is the probability of obtaining 

  

b j  given that we got 

  

ai  on the first measurement.  Hence, 

  

Pr(ai,b j ) = Tr riPj
B( )Tr rPi

A( )= Tr
Pi

A rPi
A Pj

B

Tr Pi
A r( )

æ 

è 

ç 
ç 

ö 

ø 

÷ 
÷ Tr rPi

A( ),   (11.10.5) 

that is, 

  

Pr(ai,b j ) = Tr Pi
A rPi

A Pj
B( ).       (11.10.6)  

Formula (11.10.6) can be generalized to more than two measurement returns separated by 
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finite time intervals and it is a simplified version of Wigner’s formula.20  Now one could 

take Wigner’s formula as primitive and use it to predict the returns of any sequence of 

measurements one wishes without having directly to appeal to the projection postulate or 

even to TDSE.  Nevertheless, if one maintains that quantum states are represented by state 

vectors and that the eigenvalue-eigenvector  principle holds, every time a new measurement 

return occurs, one must assume that collapse has taken place, even if Wigner’s formula is 

silent on it.  Indeed, Wigner himself never gave up the idea of collapse, as we shall see.  

However, one might abandon the idea of state vector altogether and just work with density 

operators, concluding that there is no abrupt non-linear collapse simply because there is 

nothing to do the collapsing, as it were.  Such an attitude could be justified by noting that 

even in standard quantum mechanics quantum states are not measurable anyway.  In other 

words, one could view collapse as a mathematical artifact associated to the (avoidable) 

introduction of state vectors, a sort of mathematical and historical curiosity. 

 However, the price to be paid for this maneuver is an increase in the lack of 

perspicuity of quantum mechanics.  For the collapse postulate explains not only why the 

system comes out of superposition but also why quickly repeated measurements have the 

same result; indeed, this was one of the main reasons for its introduction.  By contrast, 

Wigner’s formula does not explain why repeated measurements have the same results.    Of 

course, if one looks at quantum mechanics as a mere algorithm to make correct predictions, 

Wigner’s formula will do just fine; but then one would not be too bothered by the 

measurement problem in the first place: collapse works well, even if we cannot say much 

about what makes measurement such a peculiar affair to disrupt TDSE.  

                                                 
20 See appendix 4. 
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Exercises 

Exercise 11.1 

1. Prove that 

  

PA

2
= PA . 

2. Prove that 

  

Tr A A( )=1.  [Hint. The arguments of Tr can be rotated cyclically: the 

rightmost can be moved to the leftmost position and vice versa; for example, 

  

Tr ABC( )= Tr CBA( )= Tr BAC( ).  Use this to prove 

  

Tr y f( )= f y  and then apply 

this result to obtain what we want].  

3. True or false: if 

  

y1 ,…,

  

yn  span the space, then 

  

Pi

i

å = 1.  

Exercise 11.2 

1. Prove that the density operator is Hermitian.  [Hint: We need to show that 

  

X r F
*

= F r X . From the definition of density operator, we have that 

  

X r F = pi X Yi

i

å Yi F .  Now construct the complex conjugate of the 

summation’s argument and from that obtain 

  

F r X
*
.]  

2. Construct the density operator for the pure system 

  

Y =
1

3

2 - i

2

æ 

è 
ç 

ö 

ø 
÷  and determine 

  

< Sz > 

and 

  

< Sx > .  

3. There is a relatively simple way of constructing the density matrix in the basis 

  

y1 ,..., yn{ } for a pure system

  

Y = cn yn

n

å : simply set the elements of the matrix 

as

  

ri, j = c j

*
c i .  Construct the density matrix for the system 

  

Y =
1

15

3+ i

2 - i

æ 

è 
ç 

ö 

ø 
÷ .   

4. Construct the density matrix in 

  

H = H1 Ä H2  corresponding to (11.2.13). 
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Exercise 11.3 

Consider two entangled particles 1+2 in state 

  

¢ Y = a e1d1 - b e2d2 .  Determine the 

density operator for the whole system and the reduced density operators for 1 and 2. 
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Answers to the Exercises 

Exercise 11.1 

1. 

  

PA

2
= A A A A ,  and since

  

A A = 1, 

  

PA

2
= A A A A = A A = PA . 

2. 

  

Tr y f( )= Tr f y = f y .  Applying this result the projection operator we obtain 

  

Tr A A( )= A A =1. 

3.  True, as it directly follows from (11.1.3). 

Exercise 11.2 

1. 

  

X r F = pi X Yi

i

å Yi F , and consequently 

  

X r F
*

= pi X Yi

i

å Yi F
æ 

è 
ç 

ö 

ø 
÷ 

*

= pi F Yi

i

å Yi X = F r X .  

2. 

  

r =
1

9

2 - i

2

æ 

è 
ç 

ö 

ø 
÷ 2 + i 2( )=

1

9

5 4 - 2i

4 + 2i 4

æ 

è 
ç 

ö 

ø 
÷ .  Hence, 

  

  

< Sz >=
h

18
Tr

5 4 - 2i

4 + 2i 4

æ 

è 
ç 

ö 

ø 
÷ 

1 0

0 -1

æ 

è 
ç 

ö 

ø 
÷ 

é 

ë 
ê 

ù 

û 
ú =

h

18
(5 - 4) =

h

18
;  

  

  

< Sx >=
h

18
Tr

5 4 - 21

4 + 2i 4

æ 

è 
ç 

ö 

ø 
÷ 

0 1

1 0

æ 

è 
ç 

ö 

ø 
÷ 

é 

ë 
ê 

ù 

û 
ú =

4

9
h . 
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3. First, let us express the state vector explicitly in terms of the basis vectors: 

  

Y = c1

1

0

æ 

è 
ç 

ö 

ø 
÷ + c2

0

1

æ 

è 
ç 

ö 

ø 
÷ =

3+ i

15

1

0

æ 

è 
ç 

ö 

ø 
÷ +

2 - i

15

0

1

æ 

è 
ç 

ö 

ø 
÷ .  Then, in that basis, 

  

r =
c1

2
c1

*
c2

c1c2

*
c2

2

æ 

è 
ç ç 

ö 

ø 
÷ ÷ =

2

3

1- i

3
7 - i

15

1

3

æ 

è 

ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
. 

4. 

  

r =
aa* ab*

ba* bb*

æ 

è 
ç 

ö 

ø 
÷ .  Note that this matrix is 2x2 while it should be 4x4 because it operates 

in a 4-dimensional space.  However, we can compress the notation by eliminating all the 

columns and rows containing only elements equal to zero.        

Exercise 11.3 

  

r ¢ Y = a
2

e1 Ä d1( ) e1 Ä d1( )-ab* e1 Ä d1( ) e2 Ä d2( )-a*b e2 Ä d2( ) e1 Ä d1( )+

b
2

e2 Ä d2( ) e2 Ä d2( ),
that is,  

  

r ¢ Y = a
2

e1 e1 Ä d1 d1( )-ab* e1 e2 Ä d1 d2( )-a*b e2 e1 Ä d2 d1( )+

b
2

e2 e2 Ä d2 d2( ).
 

Then, 

  

r1 = a
2

e1 e1 + b
2

e2 e2 , and 

  

r2 = a
2

d1 d1 + b
2

d2 d2 . 
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