Appendix 2: Trigonometry

Using figure 1, we define

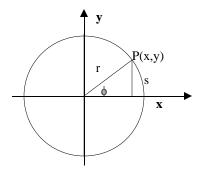


Figure 1

$$\sin\phi = \frac{y}{r}; \cos\phi = \frac{x}{r}; \tan\phi = \frac{\sin\phi}{\cos\phi} = \frac{y}{x}.$$
 (A2.1)

We should note that ϕ is measured *counterclockwise* starting from the positive *x*-axis. Although the distance *r* is always positive, the signs of *x* and *y* depend on the quadrant, and consequently the basic trigonometric functions have the following signs:

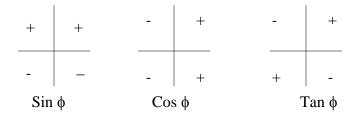


Figure 2

Trigonometry can be very useful when working with right triangles, since in a right triangle the following relations obviously hold:

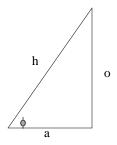


Figure 3

$$\sin\phi = -\frac{o}{h}; \cos\phi = -\frac{a}{h}; \tan\phi = -\frac{o}{a}.$$
 (A2.2)

EXAMPLE A1.1

When the sun is 60° above the horizon, how long is the shadow cast by a 150m high skyscraper? Using figure 3, let us set o = 150m and $\phi = 60^{\circ}$. What we look for is a. But $\tan \phi = \frac{o}{a}$, so that $a = \frac{o}{\tan \phi}$. Hence, $a = \frac{150}{\tan 60^{\circ}}$. By using a scientific calculator, we obtain $a = \frac{150}{1.73} = 86.7m$.

In the examples, we have measured angles in terms of degrees. However, for reasons that need not concern us, in calculus it is better to use *radians*. Consider figure 1; if s = r, that is, if the angle ϕ cuts off an arc length s equal to the radius r, then ϕ measures one radian. If ϕ is two radians then s is twice the radius r. In general, $s = r\phi$, (A2.3)

where ϕ is measured in radians. When s is the whole circumference, then $s=2\pi r=r\phi$, that is, $2\pi=\phi$. So, there are 2π radians in 360° , which allows us to convert degrees in radians and vice versa. For example, 90° are equivalent to $\pi/2$ radians.¹

Using (A2.1), if we set r = 1 and make ϕ the independent variable (in which case it is customary to denote it with x), we obtain the following two plots for $\sin x$ and $\cos x$:

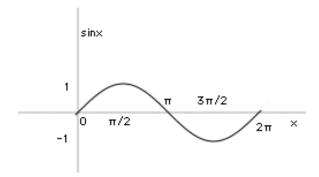


Figure 4

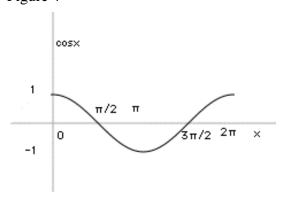


Figure 5

Note that the values of $\sin x$ and $\cos x$ oscillate between -1 and +1.

¹ When using a calculator to measure trigonometric functions, make sure you know

whether you are using radians or degrees!

401

Exercises Exercise A2.1

- 1. A man scrambles 300m along a road inclined 60° from the horizontal. How high has he gotten? [Hint. Use figure 3 with h = 300m and $\phi = 60^{\circ}$].
- 2. A broken pole stuck into the ground makes a right angle with it. If the broken part makes a 60° angle with the ground, and the top of the pole is now 10m high, how tall was the pole before it broke? [Hint. Use figure 3 with o = 10m and $\phi = 60^{\circ}$].

Exercise A2.2

Determine the radian equivalent of a: 30°; b: 45°; c:180°; d:270°.

Answers to the exercises

Exercise A2. 1

- 1. By using a scientific calculator, we obtain $o = 300m \cdot \sin 60^{\circ} = 259.8m$.
- 2. The total height is (10+h)m. But $h = \frac{10m}{\sin 60^{\circ}} = 11.62m$.

Exercise A2.2

$$a: \pi / 6$$
; $b: \pi / 4$; $c: \pi$; $d: 1.5\pi$.